
GENERAL CHIEMISTRY

Why Study Chemistry?

- learn fundamental physical laws
- develop problem solving skills
- gain technical perspective on current events

The Central Science

Major Divisions

- biochemistry study of biological compounds
- organic chemistry carbon based compounds
- ➤ inorganic chemistry all other elements
- ➤ analytical chemistry methods of analysis
- physical chemistry theory and concepts

Chemistry

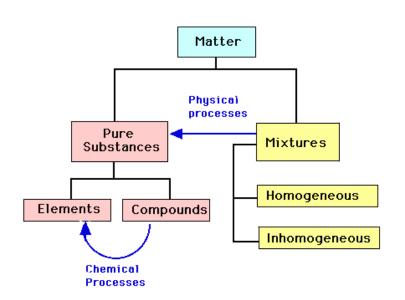
the study of matter & the changes it undergoes

- These changes are called chemical reactions
- > Elements: atoms & molecules
- Compounds: molecules

Periodic table of elements

	1 1A																	18 8A
	1 H 1.00794	2 2A											13 3A	14 4A	15 5A	16 6A	17 7A	2 He 4.00260
2	3 Li 6.941	4 Be 9.01218											5 B 10.811	6 C 12.011	7 N 14.0067	8 O 15,9994	9 F 18.9984	10 Ne 20,1797
	11 Na	12 Mg	3	4	5	6	7	8	9	10	11	12	13 A1	14 Si	15 P	16 S	17 CI	18 Ar
l	22.9898	24.3050	3B 21	4B 22	5B 23	6B	7B 25	26	- 8B -	28	1B 29	2B 30	26.9815 31	28.0855 32	30.9738	32.066	35.4527 35	39.948
	K 39.0983	Ca 40.078	Sc 44.9559	Ti 47.88	v	Cr 51.9961	Mn 54.9381	Fe 55.847	Co 58.9332	Ni 58.693	Cu 63.546	Zn 65.39	Ga 69.723	Ge	As 74.9216	Se 78.96	Br 79.904	Kr 83.80
,	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
Ì	85.4678 55	87.62 56	88.9059 57	91.224 72	92.9064 73	95.94 74	(98) 75	76	102.906 77	106.42 78	107.868 79	80	114.818 81	118.710 82	121.76 83	127.60 84	126.904 85	131.29 86
1	Cs 132.905	Ba 137.327	*La 138.906	Hf 178.49	Ta 180.948	W 183.84	Re 186.207	Os 190.23	Ir 192.22	Pt 195.08	Au 196.967	Hg 200.59	TI 204.383	Pb 207.2	Bi 208.980	Po (209)	At (210)	Rn (222)
	87 Fr (223)	88 Ra 226.025	89 †Ac	104 Rf (261)	105 Db (262)	106 Sg (263)	107 Bh (262)	108 Hs (265)	109 Mt (266)	110 Ds (281)	111 ** (272)	112		114		116		
L	(223)	220.023	227.028	(201)	58	59	60	61	(200)	63	64	(285)	66	(289)	68	(292)	70	71
		*L	anthanide	e series	Ce 140.115	Pr	Nd 144.24	Pm (145)	Sm 150.36	Eu 151.965	Gd 157.25	Tb 158.925	Dy 162.50	Ho 164.930	Er 167.26	Tm 168.934	Yb 173.04	Lu 174.96
		+	Actinide	series	90 Th	91 Pa	92 U 238.029	93 Np	94 Pu (244)	95 Am (243)	96 Cm (247)	97 Bk (247)	98 Cf (251)	99 Es (252)	100 Fm (257)	101 Md (258)	102 No (259)	103 Lr (260)

			Ga	ses			Liq	uids	i		So	lids					
1																	2
3	4											5	6	7	8	9	10
11	12											13	14	15	16	17	18
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
87	88	89	104	105	106	107	108	109	110	111	112	113	114	115			
		58	59	60	61	62	63	64	65	66	67	68	69	70	71		
		90	91	92	93	94	95	96	97	98	99	100	101	102	103		


- Most elements are solids at normal temperatures
 - ➤ 1 oz silver dollar coin contains 160,000,000,000,000,000,000 atoms of silver

What are atoms made of?

Matter & Energy

Matter • Anything that occupies space and has mass

Mass • Measures the amount of matter an object contains

States of matter

Math Review (append 3)

- 1. Exponents/Scientific noatation
- 2. Ratios and Proportions
- 3. Percentage (%)

Read this link – required reading: www.shodor.org/unchem/math/index.html

Origins of Chemistry

technological (or factual)
philosophical (or theoretical) Ancient Greeks
First to formulate theories explaining
behavior of matter principles

first humans, antiquity

⇒ chemical changes such as Cook food, baked pottery,,smelted ores

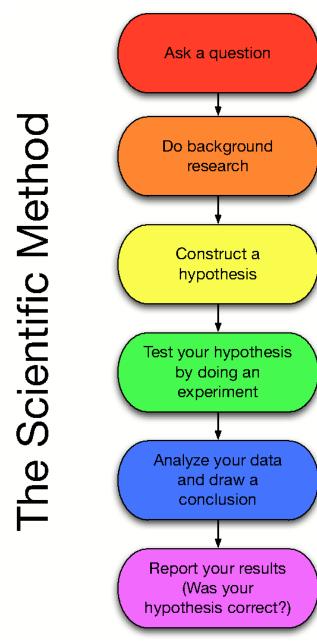
Others ⇒ fermentation, dyes, drugs from plants

All possible without knowing scientific principles

Objectives of alchemy

Alchemy

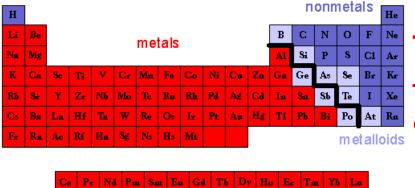
New discoveries



Modern science

- To find the panacea
 - medicine to cure illness & diseases
- To find the elixir of life
 - immortality
- Transmutation
 - convert "base metals" to gold

The Scientific Method


Process used to develop laws and theories

Elements arranged in Periodic Table

May be metals, nonmetals, metalloids

Pure substances that can't be broken down in simpler substances

- Each element assigned a unique symbol
- Each is 1-2 letter; first letter capitalized
- Symbol may not match name;
 May be based on different name

Know symbols for first 36 elements; plus others we discuss

Also see table 1.1 page 6

Measurements, Units, Significant Figures

English System Metric System

Metric (Decimal) System

French Revolution (1800)

```
meter 

"one-ten-millionth the distance from the equator to North Pole"

Volume 

Iiter

Mass 

kilogram

Time 

second

In science:

use SI units
```

Metric units:

(mostly metric)

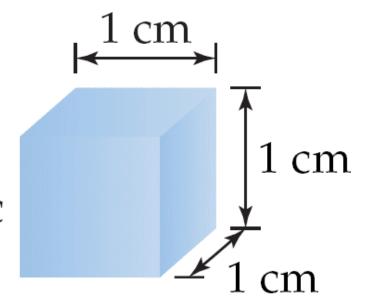
1 base unit for each measurement type

Use prefixes to change size of units

Metric/SI units table 1.2

Type	Name	Symbol
Mass	gram	g
Length	meter	m
Volume	liter	L
Energy	joule	J
Temp	Celsius	°C
Amount	Mole	mol

Metric/SI system


Prefix	Symbol	Factor
mega	M	10 ⁶
kilo	k	10 ³
deci	d	10 ⁻¹
centi	C	10 ⁻²
milli	m	10 -3
micro	μ	10 ⁻⁶
nano	n	10 -9

Also tera-, giga-, pico-

see table 1.3, p10

Volume tricky

$$1 \text{ mL} = 1 \text{ cm}^3 = 1 \text{ cc}$$

Converting between units

English ⇔ English English ⇔ Metric Metric ⇔ Metric

Dimensional Analysis

How many miles in 50 kilometers?

Need conversion factor

0.62 miles = 1 kilometer

There are 0.62 miles per 1 km or......

0.62 miles 1 km

To convert: multiply given quantity by conversion factor

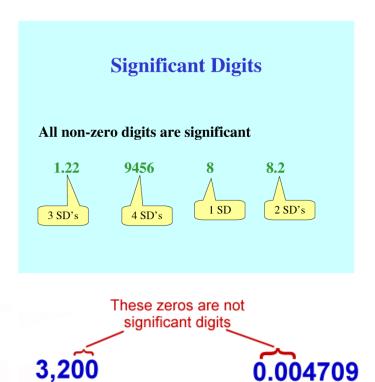
Make sure end up with right units

Miles = 50 km x <u>0.62 miles</u> 1 km

= 31 miles

How much is gold worth? Mass = 290 kg \$1,200 per oz

$$kg \rightarrow lb \rightarrow oz \rightarrow$$
\$


≈\$12 million

Significant Figures

Read: Section 1.6

- Numbers important in science
- Used in measurements or counting objects
- Measured measurement tool gives level of significance or accuracy
- Counted all digits are significant
- Example Area of rectangle 10.5 inch long & 6.401 inch wide
 - Answer 67.2105 inch²
- Can't get answer more accurate than the numbers used in measurement
 - ➤ Correct Answer 67.2 inch²
- This is Rounding off

Last digit uncertain, but significant

Scientific Notation

 \rightarrow 123,000,000 = 1.23 x 10⁸

mantissa x basepower

Scientific Notation

 \rightarrow 123,000,000 = 1.23 x 10⁸

mantissa x basepower

mantissa: >1 and <10

Calculators

Most calculators use scientific notation for large or small numbers Know how to use your calculator!!

- Display varies with model May be x 10° or with an E
- Usually have a button to enter exponent

Temperature

Measure of heat energy Three common scales used

Celsius to Fahrenheit formula
$$extbf{ extit{C}} = (F\!-\!32)\!\cdot\!rac{5}{9}$$

Kelvin Scale

SI unit
$$K = ^{\circ}C + 273$$

 $^{\circ}C = K - 273$

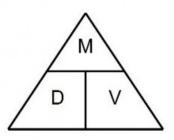
Density

Density = Mass Volume

Lead is a "heavy" metal Aluminum is a "light" metal

Density is a characteristic property of a substance.

Common units are g / cm^3 or g / ml. $cm^3 = ml$



Material	Density (g/cm³)				
gold	19.3				
mercury	13.6				
lead	11.3				
silver	10.5				
aluminum	2.7				
rubber	1.1				
water	1.0				
cork	0.24				
air	0.0013				

$$D = \frac{M}{V}$$

$$M = D \times V$$

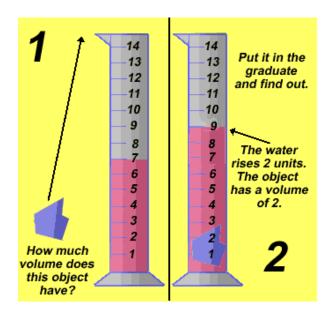
$$V = \frac{M}{D}$$

Density

What is the density of 5.00 mL of salt water if it has a mass of 5.23 grams?

density =
$$5.23 \text{ g}$$

 5.00 mL


density =
$$1.05 \text{ g/mL}$$

How do you determine the volume of a regular object...... a cube?

Measuring the density of irregular objects - a rock?

Use water displacement

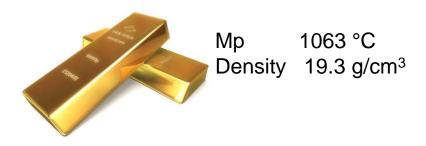
Properties of Matter

Extensive properties: Eg Mass

Depends on how much matter present

Intensive properties: Eg Bp

Does not depends on how much matter present


Physical Properties

Characteristics that can be evaluated without changing the composition of a material

Examples

Color Taste Odor Feel

Density Melting/boiling point Compressibility

Chemical Properties

Characteristics that result in a change in the composition of a material

This is called a chemical reaction

And produces a chemical change Eg rusting, combustion

Chemical reactions are described with **chemical equations**

$$H_2 + O_2 \Rightarrow H_2O + heat$$

Wood + oxygen ⇒ carbon dioxide + heat + smoke

Reactants ⇒ products

Reactants and products can be very different

No change in composition Chemical nature of components unchanged Examples melting, boiling, cutting, bending

Ask: Has the composition of the substance changed?

Are these chemical or physical changes – or both?

milk turning sour, making wine, ice melting, Coke going flat, sugar dissolved in water, water boils