Chapter 2: Atomic Theory

"all things are made of atoms - little particles that move around in perpetual motion, attracting each other when they are a little distance apart, but repelling upon being squeezed into each other" *(Richard Feynman, Six Easy Pieces, 1963)*

500 BC: Democritus verses Aristotle

Democritus: "reality is atoms and empty space"

Aristotle: "matter is infinitely divisible"

Neither were experimentalists - conclusions based on theory

atomos = indivisible

John Dalton

 > 200,000 weather observations over 46 consecutive years

Accepted views of Democritus

Proposed symbols for elements

Proposed modern atomic theory

• Hydrogen	() Soda
Nittogen	• Water
Carbon	O Oxygen
🕀 Sulphur	C Copper
() Phosphorus	L Lead

Why was Dalton sure that atoms were real?

 Elements couldn't be broken down indivisible atoms Elements combined in whole number ratios 2H:O , H₂O — Brownian motion - random motion of pollen grains on water Elements combined in more than 1 set of proportions

Dalton's Atomic Theory (1806) & All matter is composed of atoms

- & Atoms cannot be created or destroyed
- & Atoms of a given element are all the same
- & Atoms of different elements are different
- & Atoms cannot be changed into different atoms

We now know Dalton's ideas were not entirely correct • atoms are divisible • atoms can be created atoms of a given element can be different • atoms can be changed into other atoms

Scanning Tunneling Microscope

Rohrer & Binnig (1981)

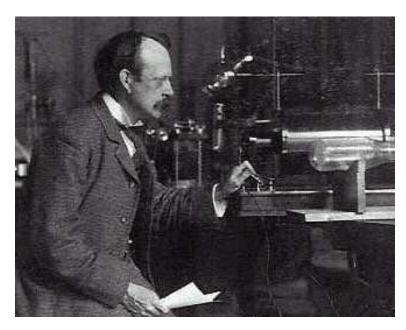
Sharp probe (<10⁻⁹ m) scans sample , map of surface STM can move atoms about

Inside the atom

Electron Proton Neutron Nucleus

The Discovery of the Electron

William Crookes (1832-1919)


- **Current passed through 2 electrodes**
- Positive electrode = anode Negative electrode = cathode
- **Tube sealed and evacuated**
- **Glows** cathode rays

What were the cathode rays?

Matter (particles) or energy (light)?

J.J. Thomson refined previous experiments and designed new ones to uncover the true nature of these mysterious cathode rays

What was Thomson's major discovery?

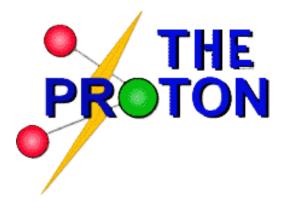
Showed that the cathode rays could bend in an electric field.

J.J. Thomson

Attracted to a positive field, repelled by a negative field.

Thomson's conclusions (1897)

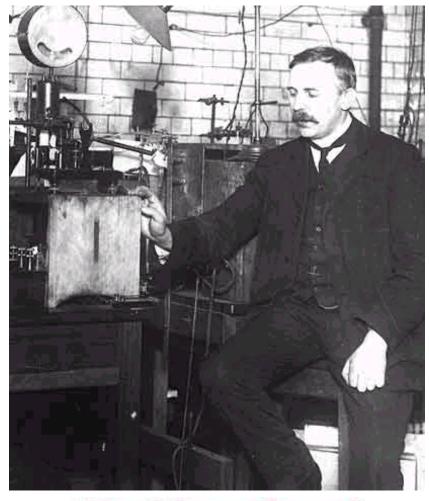
- Ø Cathode rays are charged particles, called corpuscies.
- **Ù** Corpuscles are constituents of the atom.


Proposed (1904) initial model of atom

A sphere full of positive substance mixed with negative electrons "like the raisins in a cake"

1891: "electron" - coined by G. Johnstone Stoney

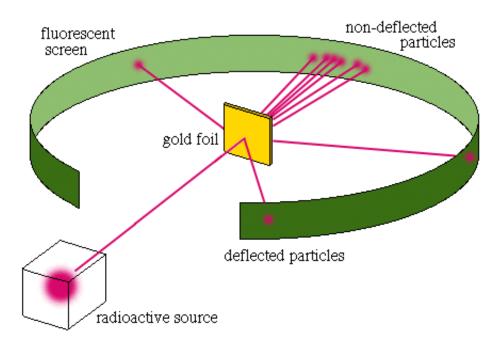
1897: George Fitzgerald suggested renaming corpuscles


What is a practical application for the Crookes Tube ?

How could atoms be neutral and be composed of only negative particles?

The search for positive particles was on!

Discovery was a gradual process, normally credited to Ernest Rutherford (1871-1937) after he discovered the nucleus (1911)

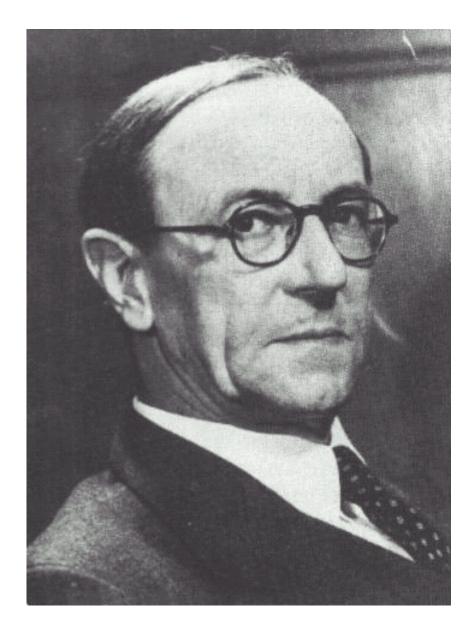

Rutherford

Born Brightwater, NZ
Studied Nelson/Canterbury Colleges
£150/year scholarship Cavendish Lab
Recent discoveries: electrons, X-rays, radioactivity

Rutherford

Worked in Thomson's lab
Discovered alpha and beta rays
Professor, McGill University, 1898
Tested Thomson's hypothesis with the "Gold foil" experiment

The Rutherford scattering experiment

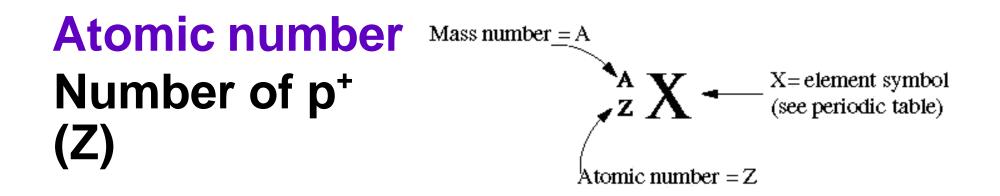

Reasoned that if Thomson's model was correct then the mass of the atom was spread out throughout the atom.

Developed the planetary model of the atom.

Protons in nucleus, electrons orbited nucleus (like planets around sun)

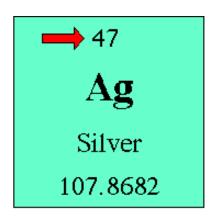
James Chadwick (1891-1974)

Problem with the mass of atoms

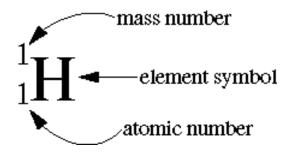

Hydrogen = 1 proton + 1 electron Helium ... 2 protons + 2 electrons

Extra mass due to?? neutrons

Relative masses: protons and neutrons equal electron 1,800 times lighter Relative size: nucleus small


LARGE HADRON COLLIDER

Atomic & Mass Numbers

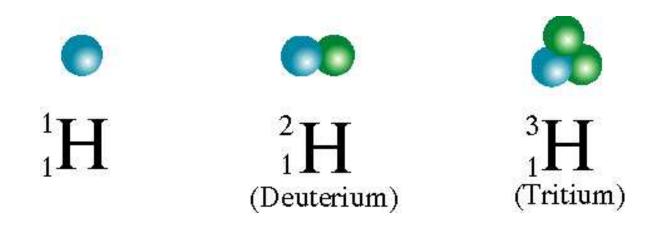


Mass number

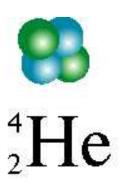
Number of p^+ + number of n^0 (A) ^{23}Na How many p^+ e⁻ n^0

Atomic & Mass Numbers

H_1^{a}


How many $p^+ e^- n^0$

Isotopes


Atoms of same element have the same number of protons, but may have different number of neutrons

Gives rise to isotopes

Isotopes are atoms of the same element having different masses

Periodic Table

Mendeleev: 1869

shows all known elements

metals: 80% non-metals: 15% metalloids: 5% metals: main group transition inner transition

Periodic table of elements

	1																	18
	1A	_																8A
	1																	2
1	Н	2											13	14	15	16	17	He
	1.00794	2A	1										3A	4A	5A	6A	7A	4.00260
	3	4											5	6	7	8	9	10
2	Li	Be											В	C	Ν	0	F	Ne
	6.941	9.01218											10.811	12.011	14.0067	15.9994	18.9984	20.1797
	11	12											13	14	15	16	17	18
3	Na	Mg	3	4	5	6	7	8	9	10	11	12	Al	Si	Р	S	C1	Ar
	22.9898	24.3050	3B	4B	5B	6B	7B		— 8B —		1B	2B	26.9815	28.0855	30.9738	32.066	35.4527	39.948
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
i.	39.0983	40.078	44.9559	47.88	50.9415	51.9961	54.9381	55.847	58.9332	58.693	63.546	65.39	69.723	72.61	74.9216	78.96	79.904	83.80
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
	85.4678	87.62	88.9059	91.224	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.411	114.818	118.710	121.76	127.60	126.904	131.29
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ba	*La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Ро	At	Rn
	132.905	137.327	138.906	178.49	180.948	183.84	186.207	190.23	192.22	195.08	196.967	200.59	204.383	207.2	208.980	(209)	(210)	(222)
	87	88	89	104	105	106	107	108	109	110	111	112		114		116		
7	Fr	Ra	†Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	**	**		**		* *		
	(223)	226.025	227.028	(261)	(262)	(263)	(262)	(265)	(266)	(281)	(272)	(285)		(289)		(292)		

	58	59	60	61	62	63	64	65	66	67	68	69	70	71
*Lanthanide series	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
	140.115	140.908	144.24	(145)	150.36	151.965	157.25	158.925	162.50	164.930	167.26	168.934	173.04	174.967
	90	91	92	93	94	95	96	97	98	99	100	101	102	103
†Actinide series	Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	232.038	231.036	238.029	237.048	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)

Periodic Table

Groups 1-18: similar chemical/physical properties

Periods 1-7: properties change regularly

Special names for groups 1, 2, 17, 18

Molecules and Ions

Molecules:

2 or more atoms bonded together can be elements or compounds can be diatomic or polyatomic

lons:

atoms or molecules with + or -charge formed by gain/loss of electrons + ion = cation - ion = anion

Chemical Nomenclature

1. Naming inorganic compounds

2. Writing chemical formulas

Chemical Names and Formulas

H₂O NaCl

both examples of binary compounds

NaCI: salt common or traditional name sodium chloride scientific/systematic name **Binary Compounds**

1) Two Non-metals

covalent compounds electrons shared Ending of second element changed to end in -ide **Binary Compounds**

1) Two Non-metals

CO₂ þ carbon dioxide CO₂ þ carbon dioxide PCl₃ þ phosphorus trichloride PCl₃ þ phosphorus trichloride

1) Two Non-metals

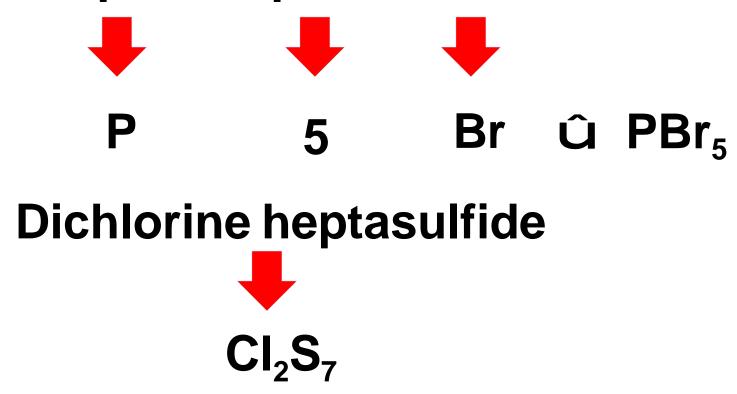
Binary Compounds

Binary Compounds

1) Two Non-metals

- N₂O dinitrogen oxide
- N₂O dinitrogen oxide

Prefixes


1	mono-	6	hexa-
2	di-	7	hepta-
3	tri-	8	octa-
4	tetra-	9	nona-
5	penta-	10	deca-

When it is necessary to specify the number of atoms in a formula, Greek prefixes are used

Fig 2.4, page 46

Writing formulas from names

Phosphorus pentabromide

Binary Compounds

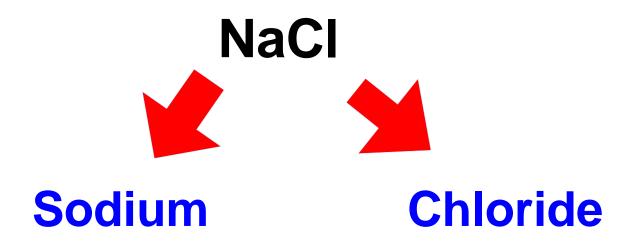
2) Metal + Non-metal

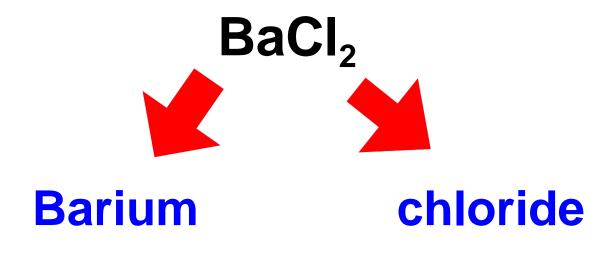
Ionic compounds

electrons transferred

NAMING IONIC COMPOUNDS

Name the cation first Name the anion second


NAMING IONIC COMPOUNDS


Monoatomic cations take their name from the element name

Monoatomic anions take their names from the first part of the element name and then add "-ide"

NAMING IONIC COMPOUNDS

Cation	Name	Anion	Name
-	Sodium	CI ⁻	Chloride
	Aluminum	O ²⁻	Oxide

Note: no prefixes

Cation + anion = neutral ionic compound

cation	anion	compound
Ca ⁺²	C1 ⁻¹	CaCl ₂
Ba ⁺²	0 ⁻²	BaO
к+1	s ^{−2}	к ₂ \$
Fe ⁺³	Br ⁻¹	FeBrz
Cr ⁺³	0 ⁻²	Cr203

Name the following.....

- Li₂O Lithium oxide
 - Zinc oxide

AICI₃

ZnO

Aluminum chloride

 Ba_3N_2

Barium nitride

Some metal cations have fixed charge

Some have variable charge

Elemental Cations

+1																	
н	+2											+3					He
Li	Be											в	С	Ν	0	F	Ne
Na	Mg	+3		vari	iabl	e ch	narg	jes		+1	+2	A1	Si	Р	S	cı	Ar
K	Ca	Se	Ti	v	Cæ	Ma	Fe	Co	Ni	Cu	Zn	Ga	Ge	A_3	Se	Br	Kr
Rь	Sr	Y	Zr	ΝЬ	Мо	Te	Ru	Rh	Pđ	Ag	Cđ	In	Sn	Sb	Te	Ι	Xe
C3	Ba	La	Hf	Та	w	Re	O ₂	Ir	Pt	An	Hg	ТІ	Рь	Bi	Ро	At	Rn
Fr	Ra	Ac	Rf	Ha	Sg	Ns	H3	M±									

- iron(II) ion Fe^{2+}
- Fe³⁺ iron(III) ion
- K^+
 - potassium ion
- Al³⁺ aluminum ion
- Ba²⁺ barium(\blacksquare) ion

Indicate the charge with a Roman numeral...

... unless the element forms only one cation.

Fig 2.10, page 39

Variable charge metal ions to know:

Cobalt:	Co ²⁺	Co ³⁺
Iron:	Fe ²⁺	Fe ³⁺
Chromium:	Cr ²⁺	Cr ³⁺
Lead:	Pb ²⁺	Pb ⁴⁺
Tin:	Sn ²⁺	Sn ⁴⁺
Copper:	Cu⁺	Cu ²⁺
Gold:	Au ⁺	Au ³⁺

Name the following.....CuOCopper(II) oxideFeCl3Iron(III) chloride

Cr₂O₃ Chromium (III) oxide

Ammonium ion NH_4^+

Won't use -ic and -ous endings

Total charge cation = total charge anion

ZnO $Zn^{2+}O^{2-}$ AICI₃ $AI^{3+}(CI^{-})_{3}$ Ba₃N₂ $(Ba^{2+})_{3}(N^{3-})_{2}$

Monatomic Cation Charges

 Gp 1:
 +1
 Li⁺
 Na⁺
 K⁺

 Gp 2:
 +2
 Mg²⁺
 Ba²⁺
 Ca²⁺

 Others:
 Al³⁺
 Zn²⁺
 Ag⁺

Monatomic Anion Charges

- Gp 17: -1 F⁻ Cl⁻ Br⁻
- **Gp 16:** -2 **O**²⁻ **S**²⁻
- Gp 15: -3 N³⁻ P³⁻

Others: H⁻

Common Polyatomic Ions page 45

- NH₄⁺ ammonium
- NO₃ nitrate
- SO₄²⁻ sulfate
- CO₃²⁻ carbonate
- PO₄³⁻ phosphate
- OH⁻ hydroxide
- CN⁻ cyanide
- $C_2H_3O_2^-$ acetate
- HCO₃ hydrogen carbonate

Also need to be able to name an ionic compound from its chemical formula

Name the following.....

NaOH sodium hydroxide

Ca(CN)₂ calcium cyanide

- **K**₂**SO**₄ **potassium sulfate**
- Pb(CO₃)₂ lead(IV) carbonate

Give formulas for the following......

lithium nitrate LiNO₃

sodium sulfate

iron(II) carbonate FeCO₃

To name a compound

- 1. Is it ionic or covalent?
- 2. If ionic, does it contain a metal that can have variable charges ?

ACIDS

all acids contain hyrdogen

They produce the hydrogen ion H⁺ when dissolved in water

ACIDS

Two types

- 1. Binary acids hydrogen + nonmetal
- 2. Oxoacids hydrogen + nonmetal + oxygen

Name the following.....

- HCIhydrogen chlorideHBrhydrogen bromide
- H₂S hydrogen sulfide

when added to water the hydrogen forms ions: H⁺ ions

name changes from -ide to -ic

HCl in water.....

called hydrochloric acid

hydro means water

Name the following.....

H₂SO₄ hydrogen sulfate ? sulfuric acid

HNO₃ nitric acid

Also know: $H_3PO_4 = phosphoric acid$ $HC_2H_3O_2 = acetic acid$

hydroxides carbonates oxides bicarbonates ammonia **Common Names** dry ice baking soda marble laughing gas gypsum saltpeter