

4. Aqueous Solutions

Solutionhomogeneous mixture of two components

Many chemical reactions occur in solution Solutions in water called aqueous

Definitions

Solute component(s) in smaller amount 2 types: electrolytes & nonelectrolytes

Solvent component in greatest amount disperses reactants so they can react

Precipitate excess solute that falls out of solution as a solid

Definitions

Electrolytes

dissociate in solution to form ions conduct electricity may be strong or weak

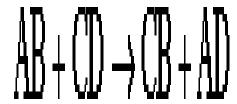
strong: HCI H₂SO₄ NaOH {ionic} weak: CH₃COOH NH₃ HF tap water

Hydration

NaCl (s) $_{s}$ Na⁺ (aq) + Cl⁻ (aq)

lons surrounded by H₂O & dissolve

Polar & Nonpolar substances


Why do salt and water mix?
Both are polar substances
NaCl (s) Na⁺ (aq) + Cl⁻ (aq)

Oil and water DON'T mix?
Oil is non-polar

Precipitation Reactions

$$AB + CD \rightarrow CB + AD$$

Precipitation Reactions

 $Pb(NO_3)_2 + 2 KI \rightarrow Pbl_2 + 2 KNO_3$ white white yellow

Precipitation Reactions

 $Pb(NO_3)_2 + 2 KI \rightarrow Pbl_2 + 2 KNO_3$ white white yellow

Solubility Rules

- 1. Compounds of Gp 1 metals and NH₄⁺ soluble
- 2. Compounds of NO₃-, acetate, ClO₄- soluble
- 3. Compounds of hydroxide

```
insoluble Exceptions: Gp 1 metals, Ba<sup>2+</sup> Sr<sup>2+</sup> Ca<sup>2+</sup> (slightly)
```

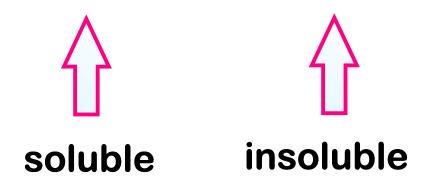
Solubility Rules

- 4. Most compounds of Cl⁻ Br⁻ l⁻ soluble Exceptions: Ag⁺ Pb²⁺ Hg₂²⁺
- 5. Compounds of carbonate, phosphate, sulfide

insoluble Exceptions: group 1, NH₄⁺

6. Most compounds of sulfate

soluble


Exceptions: Ba²⁺ Pb²⁺ (Ca²⁺ Ag⁺ slightly)

Will precipitate form?

all nitrates soluble insoluble

Will precipitate form?

$$PbCl_2(aq) + K_2SO_4(aq)$$
, $2KCl(aq) + PbSO_4(s)$

Will precipitate form?

$$PbCl_{2}(aq) + K_{2}SO_{4}(aq) = 2 KCl(aq) + PbSO_{4}(s)$$

Acids: vinegar, lemons, gastric juice

Bases: ammonia, baking soda, drano

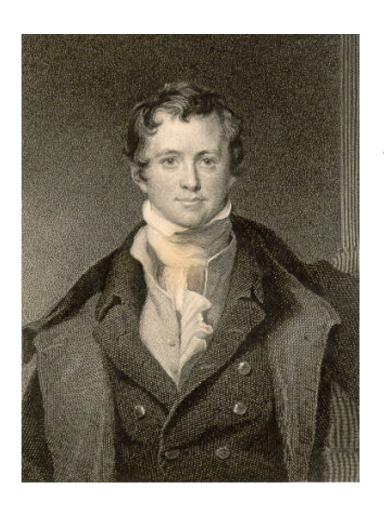
Salts: table salt

Properties

- Acids: 1. sour
 - 2. change color of dyes
 - 3. dissolve metals to form hydrogen
 - 4. react with carbonates to form CO₂
 - 5. neutralize bases

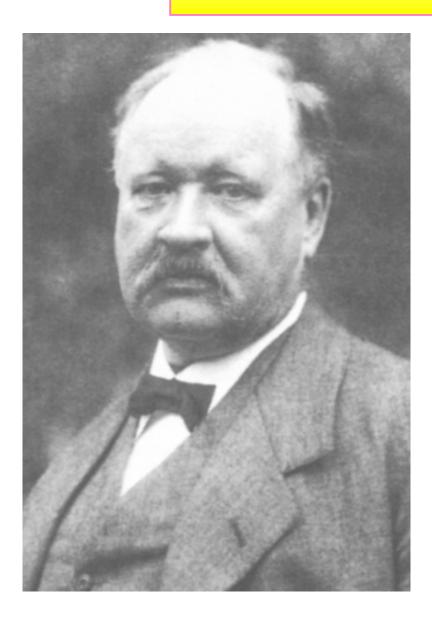
water soluble acids form hydrogen ions

Properties


Bases: 1. bitter

- 2. change color of dyes
- 3. soapy feel
- 4. neutralize acids

In water, soluble bases can form OH⁻ or CO₃²⁻ or O²⁻ ions
These ions react with H⁺ ions


NH₃ another common base

Acid-Base Theory

Davy (1811)
all acids contain hydrogen

Acid-Base Theory

Arrhenius (1884)

acid: form H⁺ in water

base: form OH⁻ in water

Acid-Base Theory

Bronsted

Lowry

(1923)

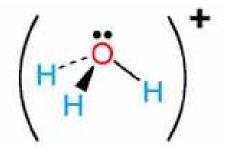
Acid: lose or donate H⁺

Base: gain or accept H⁺

Acid Definition: substance that produces hydrogen ions in water called a Lowry-Bronsted acid

HCI H₂SO₄ HNO₃ H₃PO₄ CH₃COOH

Dissociation


Acids and bases dissociate or ionize in water

$$HCI(aq)$$
 6 $H^{+}(aq) + CI^{-}(aq)$

KOH (aq) 6
$$K^+$$
 (aq) + OH $^-$ (aq)

The Hydronium Ion

$$H_3O^+$$

self ionization of water

Some Reactions

In general:

HCI + NaOH 6 NaCl +
$$H_2O$$

2 HCl + Na₂CO₃ 6 NaCl + CO_2 + H_2O

Both are neutralization reactions

Salts

Product of acid + base reaction

HCI + NaOH 6 NaCI + H₂O

when an acid reacts with a base a salt and water form

carbonates 6CO₂ gas

Polyprotic Acids

HCI: monoprotic acid

H₂SO₄: diprotic acid

H₃PO₄: triprotic acid

$$H_2SO_4$$
 (aq) ° H^+ (aq) + HSO_4^- (aq)
 HSO_4^- (aq) ° H^+ (aq) + SO_4^{2-} (aq)

Common Acids

HCI cleans metals, brick, cement

H₂SO₄ car batteries, fertilizers, industrial chemicals, nitroglycerin

HNO₃ fertilizers, dyes, plastics, explosives

All are corrosive

Common Bases

NaOH drain cleaner,

soap manufacture

Ca(OH)₂ lime, mortar, plaster,

cement

NH₃ cleaner

Mg(OH)₂ milk of magnesia

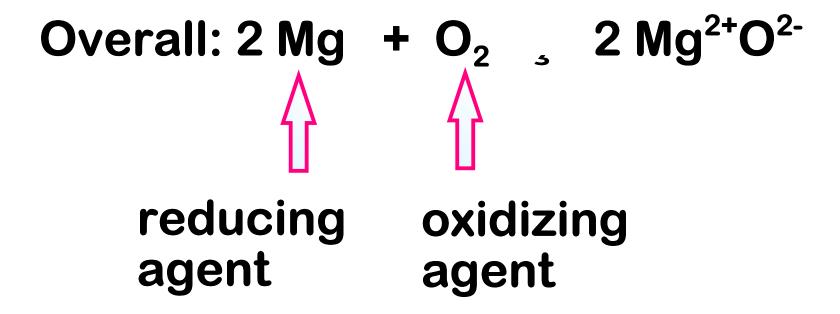
Many drugs: cocaine, morphine, nicotine

Electron transfer reactions

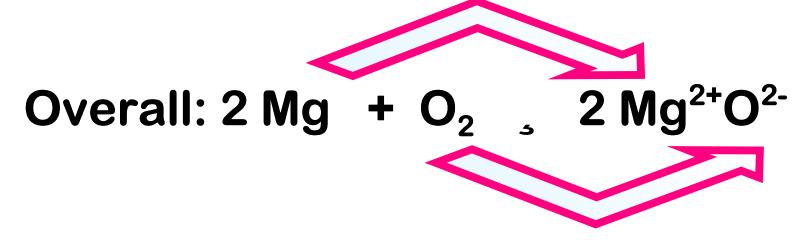
2 Mg (s) + O₂ (g) , 2 MgO (s)

really two reactions

oxidation: loss of electrons
reduction: gain of electrons


Break into 2 half reactions

Oxidation Loss of electrons Mg oxidized


Half-reaction: Mg , Mg²⁺ + 2 e⁻
Reduction Gain of electrons
O₂ reduced

Half-reaction: $O_2 + 4 e^{-1} = 2 O^{2}$

Overall: $2 \text{ Mg} + O_2$ $_{3}$ $2 \text{ Mg}^{2+}O^{2-}$

magnesium oxidized

oxygen reduced oxidation numbers

Keeps track of electrons

Uses
naming compounds
classifying reactions
writing formulas

Summary of rules

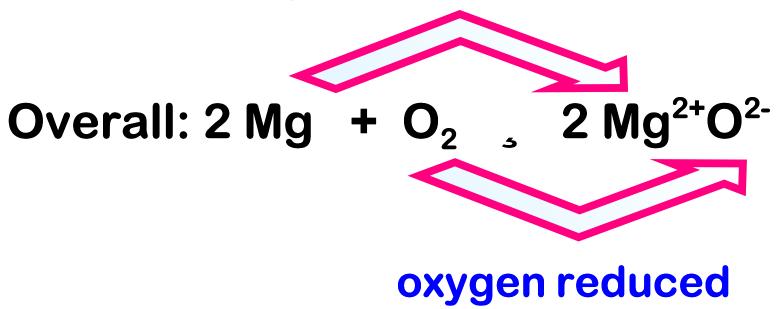
- 1. free elements = 0
- 2. monatomic ions = ionic charge

3.
$$F = -1$$
 $O = -2$

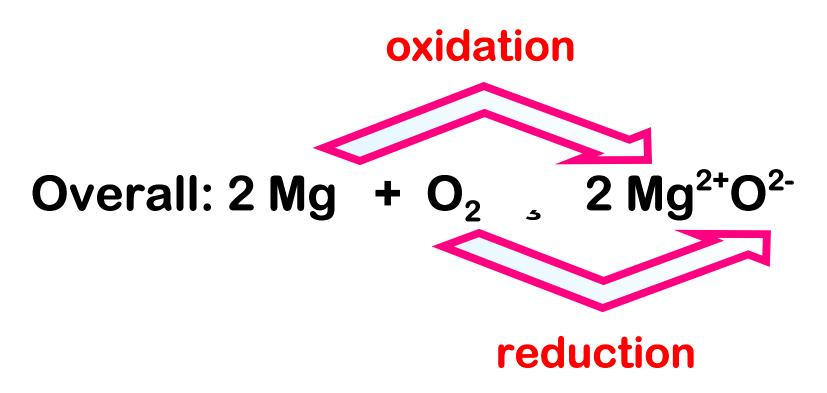
4.
$$H = +1$$
 (with nonmetals)
 $H = -1$ (with metals)

Summary of rules

- 5. some elements >1 oxidation number N,S,P,CI; transition metals
- 6. Neutral compounds: sum of oxidation numbers = 0


Be able to assign oxidation numbers to elements in a compound. Use above rules.

Examples: NaF H₃PO₄


NaF: F always -1 Na must be +1

$$H_3PO_4$$
: $O = -2$; $H = +1$
 $\{3 \times (+1)\} + P + \{4 \times (-2)\} = 0$
 $P = +5$

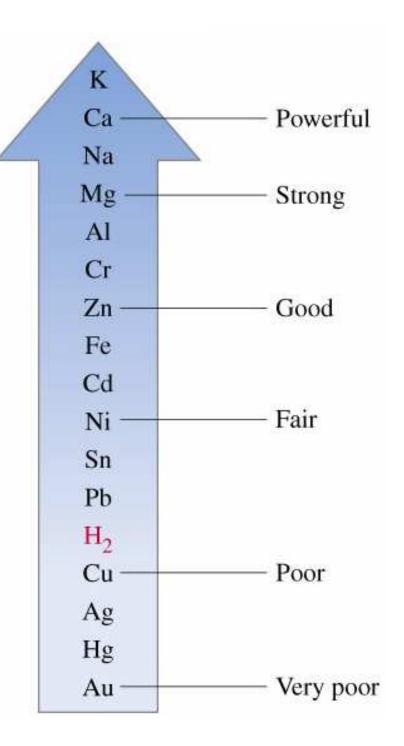
magnesium oxidized

Oxidation & reduction Reactions

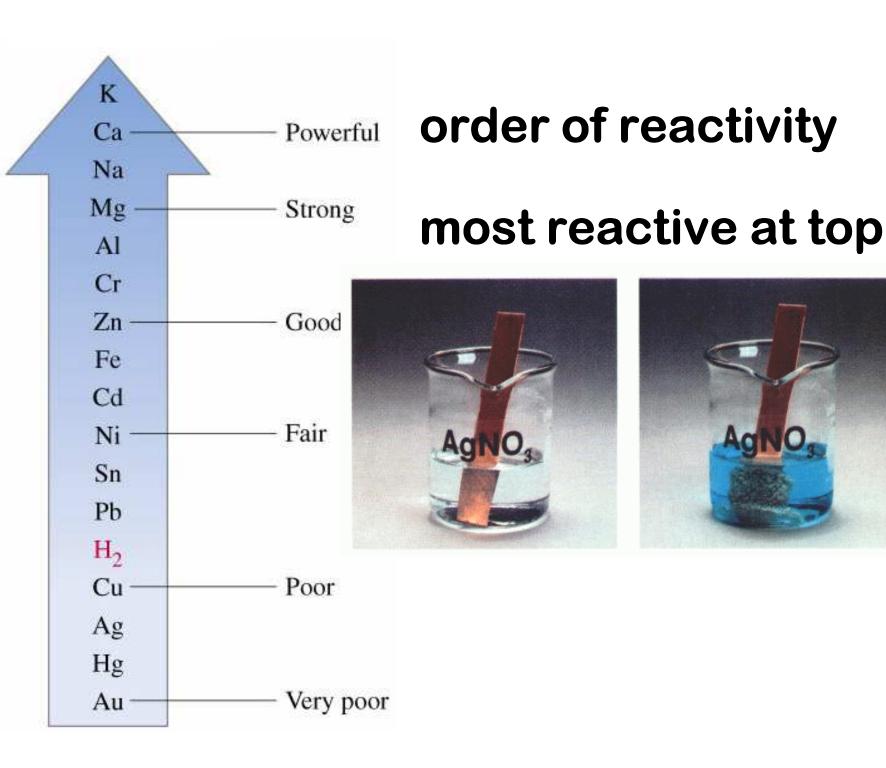
oxidation: increase in oxidation number reduction: decrease in oxidation number

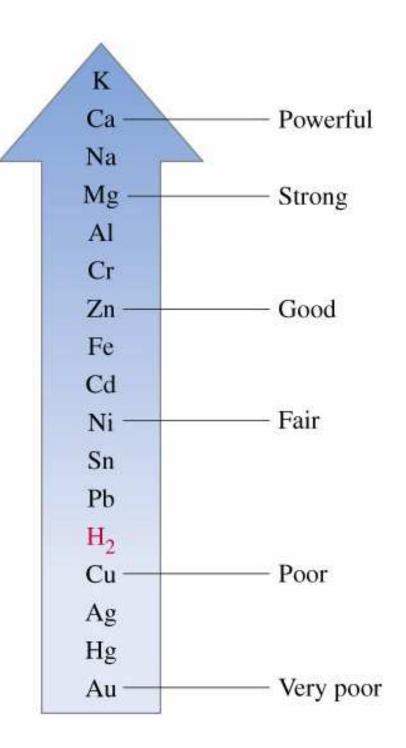
Activity Series

If element A is more reactive then element B, it can displace element B from a compound


magnesium displaces hydrogen

Activity Series


Fig 4.14 describes order of displacement reactions


$$Mg + 2 HCI \pm MgCI_2 + H_2$$

magnesium higher than hydrogen

order of reactivity most reactive at top

order of reactivity most reactive at top

Activity Series of Metals

increasing reactivity

potassium sodium calcium magnesium aluminum zinc chromium iron nickel tin lead copper silver platinum gold

React violently with cold water React slowly with cold water

React very slowly with steam but quite reactive in acid

React moderately with high levels of acid

< HYDROGEN comes here

Unreactive in acid

-3:

see fig 4.14

Concentration

Measure amount of solute in a solution

weight / volume % volume / volume / volume % weight / weight % molarity

Concentration

Saline: 0.9 wt/vol %

Alcohol in wine: 6 vol/vol %

Fat in ham: 3 wt/wt % (or 97% fat free)

Molarity: no consumer use used by chemists

Concentration

```
molarity = moles solute
volume of solution
volume in liters
symbol: M units: mol/L
```

A 1 M = a one molar solution
[] means molar eg [NaCl] = 2.0 M

Calculate the molarity of a 2.0 L solution containing 10.0 moles of NaOH

```
molarity = <u>moles solute</u>
volume of solution
```

$$M = 10.0 \text{ mol NaOH} = 5.0 \text{ M}$$

2.0 L

Calculate the molarity of 2.0 L of a solution containing 18.23 g of HCI

Need moles HCI Use formula weight

F.Wt. (HCI) =
$$1.008 + 35.34 = 36.46$$

moles (HCI) = $\frac{mass}{18.23} = 0.50$ mol
F.Wt. 36.46
molarity (HCI) = $\frac{0.50}{100} = 0.25$ M
 $\frac{2.0}{100}$ L

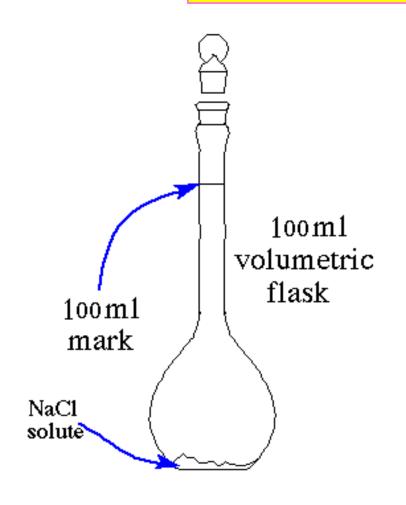
$$M = \underline{mol}$$

$$mol = MV$$

molarity = <u>moles solute</u> volume of solution

Making Solutions

Solutions are prepared in two ways:


Weighing proper amount of solute and diluting to volume

Note: water mixed with concentrated solution makes a diluted (less concentrated) solution

Making Solutions

How would you prepare 100 mL of a 0.5000 M NaCl solution? First calculate moles of NaCl needed $mol = MV = 0.5000 \times 0.1000 L$ = 0.05000 moles NaCl Next, find mass of NaCl needed mass = mol x F. Wt. = 0.5000 x 58.44 = 2.922 grams NaCl

Making Solutions

To make solution: Weigh out exactly 2.922 g dry NaCl Transfer to a volumetric flask

Fill about 1/3 with pure water Shake to dissolve Dilute to 100 mL mark

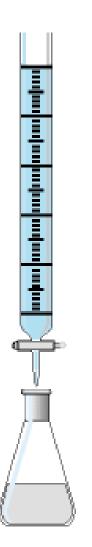
Dilutions

solutions can be easily diluted by adding more solvent (water) $M_1V_1 = M_2V_2$

where 1 is initial solution 2 is diluted solution

can use any volume or concentration unit as long as same units on both sides of equation

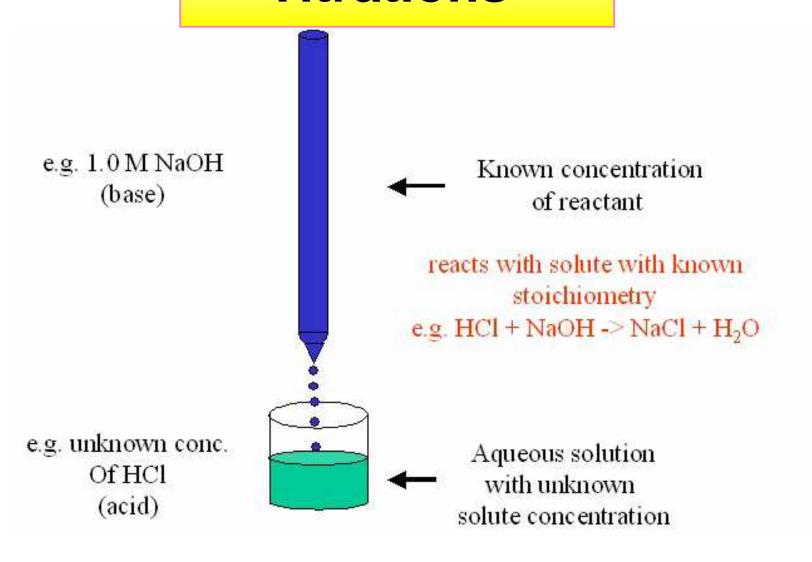
Dilutions


What is concentration of a solution produced by diluting 100.0 mL of a 1.5 M NaOH solution to 2.000 L?

$$M_1V_1 = M_2V_2$$
 $M_1 = 1.5 \text{ M}$ $V_1 = 100.0 \text{ mL}$
 $M_2 = ??$ $V_2 = 2000 \text{ mL}$
 $M_2 = (M_1V_1)/V_2 = 1.5 \text{ M} \times 100.0 \text{ mL}$
 $= 0.075 \text{ M}$

A reaction between two reactants where the amount of one reactant is unknown

Often, one is an acid and one is a base: acid-base titration


Both reactants need to be in solution Reactants must be carefully measured and mixed together

Solution of known concentration called titrant and placed in buret

Solution of unknown concentration measured with a pipet and placed in a flask with an indicator

Titrant added to flask until indicator changes color = equivalence point

Indicators: dyes that change color at end of reaction phenolphthalein

In acid: colorless In base: pink

Indicators: dyes that change color at end of reaction phenolphthalein

Colorless

$$H_2In(aq) + 2H_2O$$

Pink

 $In^{2-}(aq) + 2H_3O^+$

First step is to determine the number of moles based on solution concentration and volume.

Final step is to convert back to volume or concentration as required by the problem.

You still need a balanced equation and must use the coefficients for working the problem.

Determine the volume of 0.1 M HCl that must be added to completely react with 250 mL of 2.5 M NaOH

 $HCI + NaOH \pm NaCI + H_2O$

Step 1 calculate the moles of NaOH

Step 1 calculate the moles of NaOH

Have 250 mL of a 2.5 M NaOH solution

$$mol_{NaOH} = MxV = 0.25 L x 2.50 mol/L$$

= 0.625 mol

Step 2 calculate mole of HCI

 $HCI + NaOH \pm NaCI + H_2O$

1 mole HCI needs 1 mole NaOH

Therefore need 0.625 mol HCI

Step 3 calculate volume of HCI

$$V = mol/M$$

$$= 0.625 \, \text{mol} = 6.25 \, \text{L}$$

0.100 mol/L

Determine the molarity an HCl solution if 150 mL of the HCl neutralizes 50.0 mL of a 0.150 M NaOH solution

$$HCI + NaOH \pm NaCI + H_2O$$

Step 1 calculate the moles of NaOH

$$mol_{NaOH} = MxV = 0.050 L x 0.150 mol/L$$

= 0.0075 mol NaOH

Step 2 calculate mole of HCI

 $HCI + NaOH \pm NaCI + H_2O$

1 mole HCI needs 1 mole NaOH

Therefore need 0.0075 mol HCl

Step 3 calculate molarity of HCI

M = mol/L

= 0.0075 mol = 0.050 mol/L0.150 L

Caution what if mole ratio not 1:1?

$$H_2SO_4 + 2 NaOH \pm Na_2SO_4 + 2H_2O$$

1 mole H₂SO₄ needs 2 mole NaOH

In general: aA + bB ± products

When A and B both in solution:

$$\frac{1}{a} \times M_A V_A = \frac{1}{b} \times M_B V_B$$

When A is solid and B in solution:

$$\frac{1}{a} \times \frac{\text{mass}_{A}}{\text{F. wt.}_{A}} = \frac{1}{b} \times M_{B}V_{B}$$

End of Chapter 4