## Energy and Chemical Reactions

Thermochemistry:
heat changes with chemical reactions
Units of energy: Joule (SI) & KJ

calorie (imperial) | cal = 4.18 J

nutritional Calorie = 1000 calories

# Calorimetry

The measurement of heat changes

**Definitions:** 

specific heat & heat capacity

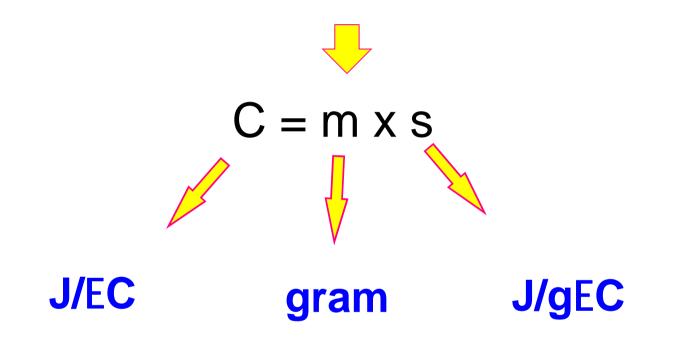
# Specific Heat (s)

Heat required to raise temperature of 1 g of a substance by 1°C

A physical property, constant units: J/g.°C

For water:  $s = 4.18 \text{ J/g.}^{\circ}\text{C}$ 

# **Heat Capacity(C)**


Heat required to raise temperature of X g of a substance by 1°C

includes mass term

C = specific heat × mass of substance (units: J/°C)

### To Calculate C

need mass and specific heat



## Calculating total heat (q)

For any substance  $q = m \times s \times T$ 

$$T = T_{\text{final}} - T_{\text{initial}}$$

How can this equation be used?

- 1. calculate heat needed to warm matter
- 2. calculate heat lost when matter cools

#### **Bath Time**

How much heat energy is required to heat 100,000 grams bath water from 25.0 to 55.0 EC?

$$q = c \times m \times ) T$$

$$q = 4.18 \times 100,000 \times 30$$
  
= 1.25 × 10<sup>7</sup> J

#### Remember!

density of water = 1.0 g/mL

for water only: mass = volume

100 g water same amount as 100 mL water

## **Another Example**

A 500.0 g block of aluminum cools from 100.0 to 50.0EC. How much heat is lost?

$$q = c \times m \times ) T$$

$$c_{(AI)} = 0.900 \text{ J/g.EC}$$

$$q = 0.900 \times 500.0 \times 50.0$$
  
= 2.25 x 10<sup>4</sup> J

#### **Heats of Reaction**

Heat is released or absorbed during a chemical change (reaction)

heat released: exothermic reaction

heat absorbed: endothermic reaction

# **Enthalpy (H)**

#### Heat content of a substance

high heat content: oil, gasoline, wood

low heat content: water

Heat released during chemical reaction = heat of reaction = ) H = H<sub>products</sub>-H<sub>reactants</sub>

Show heat evolved during a reaction

$$2 H_{2} + O_{2}$$
,  $2 H_{2}O$   
 $2 H_{2} + O_{2}$ ,  $2 H_{2}O + 570 \text{ kJ}$   
 $2 \text{ moles } H_{2} + 1 \text{ mole } O_{2}$ ,  $570 \text{ kJ}$   
 $2 H_{2} + O_{2}$ ,  $2 H_{2}O$ )  $H = 570 \text{ kJ}$ 

Show heat evolved during a reaction .....combustion of octane

$$2 C_8 H_{18} + 25 O_2$$
  $\frac{16}{3} 16 CO_2 + 9 H_2 O_1 + 1.1 \times 10^4 \text{ kJ}$ 



2 moles octane or 228 g

 $2 C_8 H_{18} + 25 O_2$ ,  $16 CO_2 + 9 H_2 O_1 + 1.1 \times 10^4 kJ$ 



228 g octane produce 1.1 x 10<sup>4</sup> kJ of heat

How much heat would 1 g of octane produce?

How much heat would 1 g of octane produce?

set up ratio 
$$\frac{228 \text{ g}}{1.1 \times 10^4 \text{ kJ}} = \frac{1 \text{ g octane}}{2 \text{ kJ}}$$

? 
$$kJ = 228 g \times 1.1 \times 10^4 kJ = 2.5 \times 10^6 kJ$$

#### Other Energy Rich Compounds

methane  $CH_4$ acetylene  $C_2H_4$ sugars  $C_6H_{12}O_6$   $C_{11}H_{22}O_{12}$ 

energy stored in chemical bonds

Chemical equations can be added ) H values also added Use to find ) H for a reaction

$$H_2O(s)$$
,  $H_2O(l)$ )  $H = + 6 kJ$   
 $H_2O(l)$ ,  $H_2O(g)$   $H = + 44 kJ$   
 $H_2O(s)$ ,  $H_2O(g)$   $H = + 50 kJ$ 

Chemical equations can be added ) H values also added Use to find ) H for a reaction

$$H_2O(s)$$
,  $H_2O(l)$ )  $H_2O(g)$   $H_2O(g)$   $H_2O(g)$   $H_2O(g)$   $H_2O(g)$   $H_2O(g)$   $H_2O(g)$   $H_2O(g)$ 

Chemical equations can be added ) H values also added Use to find ) H for a reaction

$$H_2O(s)$$
  $H_2O(g) + 44 kJ$   $H_2O(g) + 50 kJ$   $H_2O(g) + 50 kJ$ 

Rule 1. When an equation is reversed ) H sign is also reversed

$$H_2O(s)$$
,  $H_2O(l)$ )  $H_2O(s)$   $H_2O(s)$ 

Rule 2. When equation multiplied by integer, multiply ) H by same amount

$$H_2O(s)$$
,  $H_2O(l)$ )  $H = + 6 kJ$   
  $2 H_2O(s)$ ,  $2 H_2O(l)$ )  $H = + 12 kJ$ 

Use Hess's Law and rules to find ) H for a new equation, using others

How would you find ) H for:

$$2S + 3O_2$$
  $2SO_3$ 

Need related equations and ) H values

A. 
$$S + O_2$$
  $SO_2$   $SO_3$   $H = -297 kJ$   
B.  $2 SO_2 + O_2$   $SO_3$   $H = -198 kJ$ 

Somehow rearrange above to form

$$2S + 3O_2$$
,  $2SO_3$ ) H = ?

First, try adding equations A and B

A. 
$$S + O_2$$
  $SO_2$   $SO_3$   $H = -297 kJ$   
B.  $2 SO_2 + O_2$   $SO_3$   $H = -198 kJ$ 

$$S + O_2 + 2SO_2 + O_2$$
  $SO_2 + 2SO_3$ 

$$= S + 2O_2 + SO_2$$
  $2SO_3$ 

This is NOT:

$$2S + 3O_2$$
  $2SO_3$ 

Need 2 S and 3 O<sub>2</sub> on left side Multiply equation A by 2 then add B

A. 
$$2 \times (S + O_2 \quad SO_2) \quad H = -297 \text{ kJ}$$
  
B.  $2 \cdot SO_2 + O_2 \quad 2 \cdot SO_3 \quad H = -198 \text{ kJ}$   
 $2 \cdot S + 2 \cdot O_2 + 2 \cdot SO_2 + O_2 \quad 2 \cdot SO_2 + 2 \cdot SO_3$   
 $= 2 \cdot S + 2 \cdot O_2 + 2 \cdot SO_2 + O_2 \quad 2 \cdot SO_2 + 2 \cdot SO_3$   
 $= 2 \cdot S + 3 \cdot O_2 + 2 \cdot SO_2 \quad 2 \cdot SO_2 + 2 \cdot SO_3$   
 $= 2 \cdot S + 3 \cdot O_2 \quad 2 \cdot SO_3$ 

Multiply ) H of equation A by 2 then add to ) H of equation B

```
A. 2 \times ) H = -297 \text{ kJ}
B. ) H = -198 \text{ kJ}
```

$$Y = 2S + 3O_2 = 2SO_3 + -792 kJ$$

Can also use heats of formation to find ) H for a specific reaction

Heat associated with the formation of 1 mole of compound from its elements at standard conditions
Values in Table 6.4

$$\frac{1}{2}N_2 + \frac{3}{2}H_2$$
 , NH<sub>3</sub> ) H = -46 kJ/mol

Also written:  $)H_f^{\circ}(NH_3) = -46 \text{ kJ}$ 

$$H_{f}^{\circ}(NH_{3}) = -46 \text{ kJ}$$

standard conditions

write as an equation & find ) H as before