
gold, silver, tin, copper, lead, mercury sulfur, carbon

Elements known since antiquity

phosphorous

Isolated from 60 buckets of urine Greek: *phôs* (light) and *phoros* (bearer)

White, non-metallic; used by alchemists attempting to make gold.

Was also used as a spell component Extremely poisonous: 50 mg fatal

Must be stored in water exposure to air causes ignition

Over the next 200 years, much learned about the properties of elements and their compounds

LAU QF TRIAdS Johann Dobereiner (1817): groups of 3 similar elements Ca, Sr, Ba CI, Br, I Li, Na, K

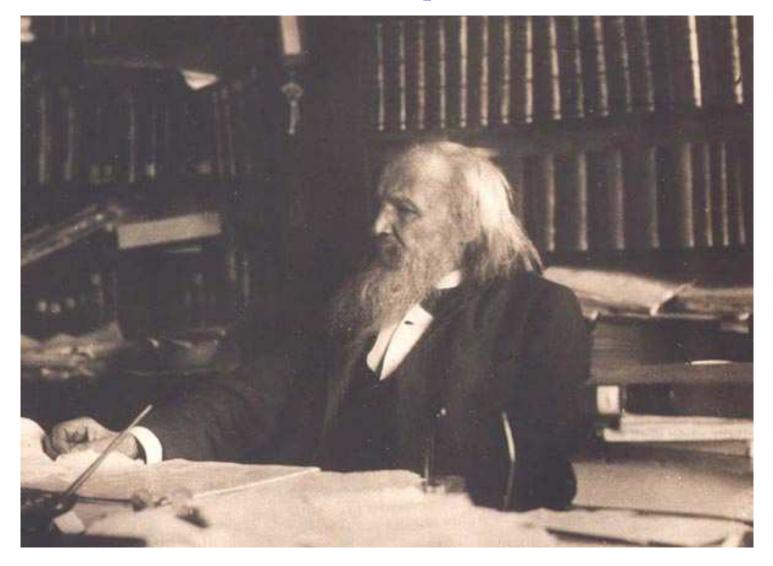
Proposed nature contained triads of elements. The middle element had properties that were an average of the other two members when ordered by the atomic weight.

Law of Octaves

1863 - John Newlands, an English chemist, classified the known elements into groups based on similar physical properties

Law of Octaves

"any given element will exhibit similar behavior to the eighth element following it in the table"


Η	F	Cl	Co/Ni	Br	Pd	Ι	Pt/Ir
Li	Na	К	Cu	Rb	Ag	Cs	Tl
G	Mg	Са	Zn	Sr	Cd	Ba/V	Pb
Bo	Al	Cr	Y	Ce/La	U	Та	Th
С	Si	Ti	In	Zn	Sn	W	Hg
Ν	Р	Mn	As	Di/Mo	Sb	Nb	Bi
0	S	Fe	Se	Ro/Ru	Te	Au	Os

"Father" of the periodic table

Lothar Meyer

"Father" of the periodic table

Dmitri Mendeleev

"Father" of the periodic table

Both chemists produced remarkably similar results at the same time working independently of one another.

Mendeleev's table published 1869, Meyer's appeared 1870 What Did Mendeleev Do? Made a card for each of the 63 known elements

Each contained element's symbol, atomic weight and characteristic chemical and physical properties

Arranged the cards in order of ascending atomic weight. Elements fell into vertical groups of elements of similar properties

What Did Mendeleev Do?

Mendeleev's table showed similarities in vertical, horizontal, and diagonal groupings (not just triads)

Gaps in table - predicted existence and properties of unknown elements which he called eka-aluminum, ekaboron, and eka-silicon.

What Did Mendeleev Do?

Grou Period		П	ш	IV	v	VI	VII	νш
1	H=1							
2	Li=7	Be=9.4	B=11	C=12	N=14	O=16	F=19	
3	Na=23	Mg=24	Al=27.3	Si=28	P=31	S=32	Cl=35.5	
4	K=39	Ca=40	?=44	Ti=48	V=51	Cr=52	Mn=55	Fe=56,Co=59 Ni=59
5	Cu=63	Zn=65	?=68	?=72	As=75	Se=78	Br=80	
6	Rb=85	Sr=87	?Yt=88	Zr=90	Nb=94	Mo=96	?=100	Ru=104,Rh=104 Pd=106
7	Ag=108	Cd=112	In=113	Sn=118	Sb=122	Te=125	J=12 7	
8	Cs=133	Ba=137	?Di=138	?Ce=140				
9								
10			?Er=178	?La=180	Ta=182	W=184		Os=195,h=197 Pt=198
11	Au=199	Hg=200	T1=204	Pb=20 7	Bi=208			
12				Th=231		U=240		

What Did Mendeleev Do?

Later named gallium, scandium and germanium which fit his predictions

Predicted 10 elements would be discovered

Rayleigh and Ramsey

Lord Rayleigh (1842-1919) and William Ramsey (1852-1916) greatly enhanced the periodic table by discovering the "inert gases"

Rayleigh and Ramsey

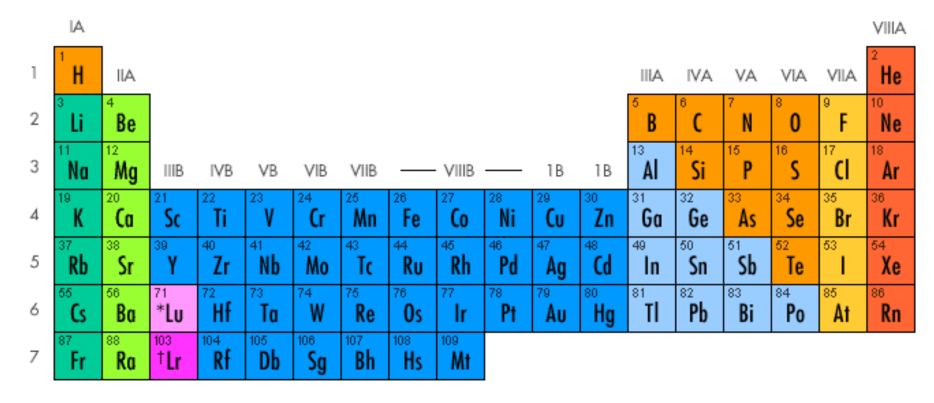
In 1895 Rayleigh reported the discovery of a new gaseous element named argon

This element was chemically inert and did not fit any of the known periodic groups

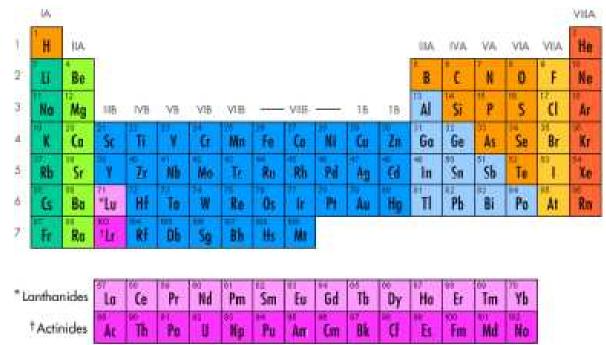
Ramsey followed by discovering the remainder of the inert gases and positioning them in the periodic table.

The Inert Gases

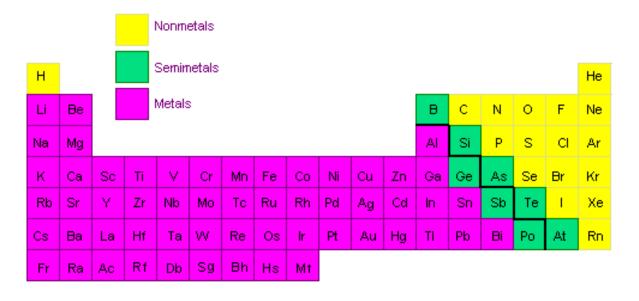
- Helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon(Xe), radon (Rn)
- Very inert and combine with very few elements
- All are colorless, odorless gases


The Inert Gases

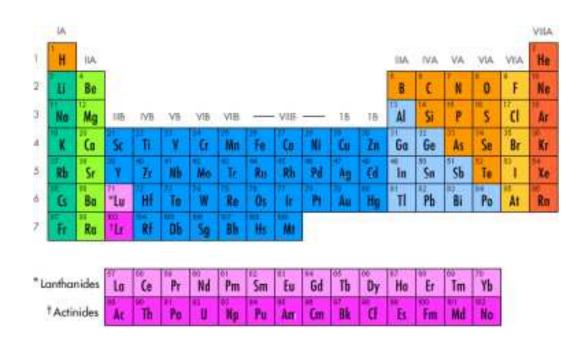
Neon gas normally glows red


Colors other than red produced using argon, mercury and phosphor

Eric Ehlenberger


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

* Lanthanides	57	⁵⁸	⁵⁹	80	⁶¹	⁶²	⁶³	⁶⁴	⁶⁵	66	⁶⁷	⁶⁸	⁶⁹	70
	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Тb	Dy	Но	Er	Tm	Yb
⁺ Actinides	89 Ac	⁹⁰ Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	°°° Cf	⁹⁹ Es	¹⁰⁰ Fm	101 Md	102 No


Of these 109 elements: 9 naturally radioactive 16 artifical radioactive

Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Th	Ра	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr

Of these 109 elements:

87 metals 8 semimetals 17 nonmetals

Of these 109 elements:11 gases2 liquids

Properties of Metals

Lustrous, malleable, ductile

Conductors of heat and electricity

Solids at room temperature, except mercury

Lose electrons when reacting with nonmetals

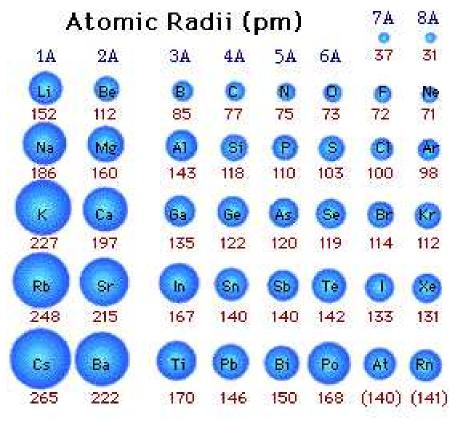
Properties of Non-metals

Physical state varies

Poor conductors of heat and electricity

Gain electrons when reacting with metals; share electrons when reacting with other nonmetals

Many exist as diatomic molecules


Can divide elements into other categories:

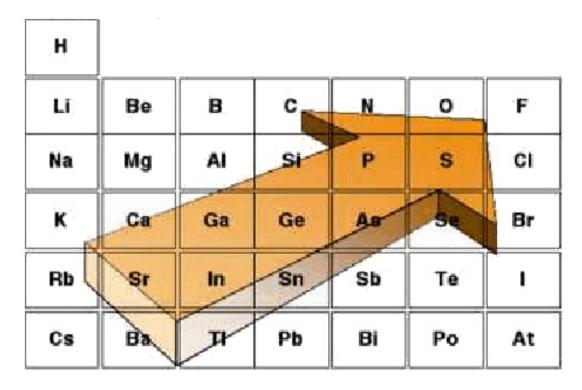
Representative elements transition metals inner transition

Certain properties of elements exhibit a gradual change in properties as we go down a group or across a period.

Knowing these trends helps to understand chemical properties

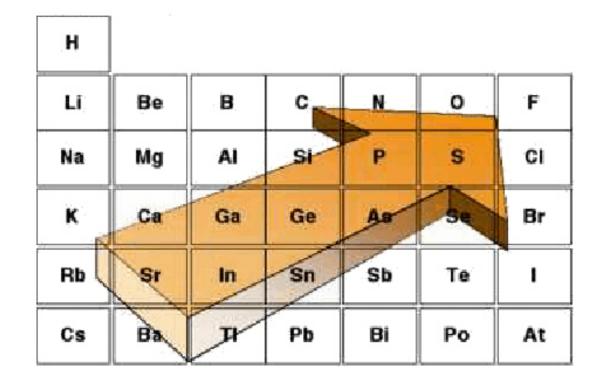
1. Atomic Size (Radius)

Within a group

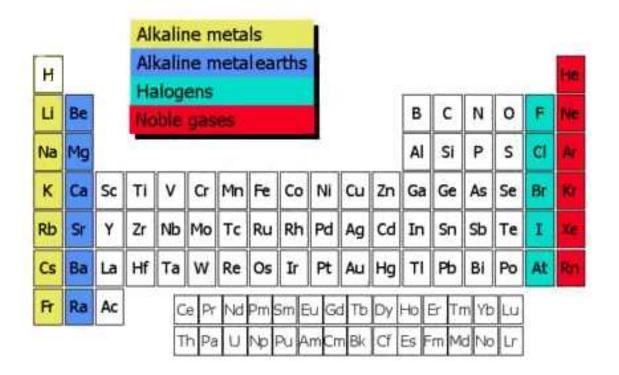

- Trend Atoms get larger
- Why? Electrons go into new shells

Across a period Trend - Atoms get smaller

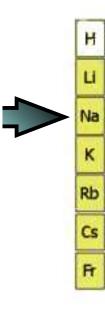
Why? - There are more protons which attract the electrons, making the atom smaller

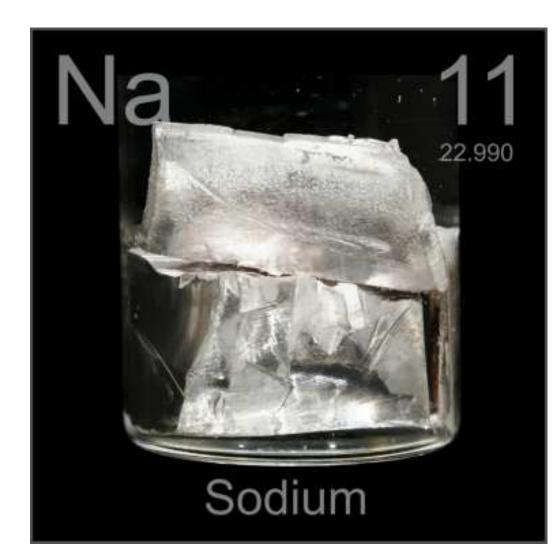

2. Ionization Energy

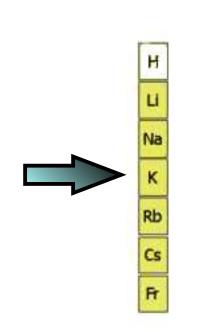
Energy required to remove an electron from valance (outer) shell


3. Electronegativity

Ability of an atom to attract electrons

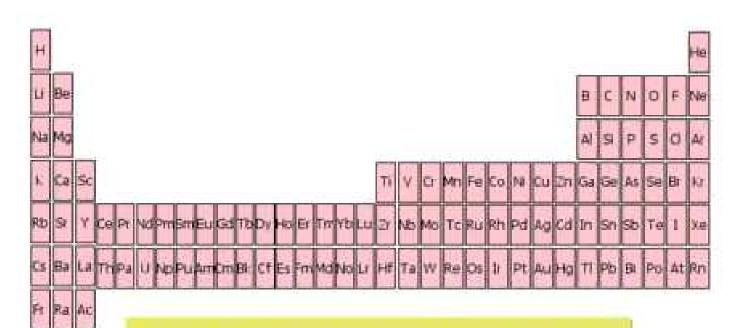

Common Group Names


н			AJ		ne n	neta neta	-	rths						(()			1-18
u	Be	1		ble		865						в	С	N	0	F	Ne
Na	Mg											AI	Si	Ρ	s	Ø	Ħ
ĸ	Ca	Sc	TI	۷	Cr	Mn	Fe	Co	NI	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	xe
Cs	Ba	La	Hf	Та	w	Re	Os	Ir	Pt	Au	Hg	TI	РЬ	Bi	Po	At	Rn
Fr	Ra	Ac		6	ie Pr	Nd	Pm	SmE	iu G	а ть	Dy	Holl	Ξr Πι	m Yt	LU		
			l.,	T	hPa	U	Nþ	PuA	mcr	n Bk	Cf	EsF	mM	dNo	Lr		



Elements in a group have similar chemical & physical properties. Reason: Outer shell has same number of electrons

Alkali metals


Alkali

Why are there rows on the bottom of the periodic table ?

н																	He
Ш	Be											в	С	N	0	F	Ne
Na	Mg											AI	Si	Ρ	s	CI	Ar
к	Са	Sc	TI	۷	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Cs	Ba	La	Hf	Та	w	Re	Os	Ir	Pt	ALI	Hg	TI	Pb	Bi	Po	At	Rn
Fr	Ra	Ac			C	P	Nd	Pm	Sml	ulg	dTt	DV	Ho	Er	Tm \	bL	u

Why are there rows on the bottom of the periodic table ?

This arrangement takes too much space and is hard to read.