#### Lab write ups

Work in groups of 2, submit reports individually **Check-in: equipment list/safety rules** 

- complete data sheets in lab
- write up labs at home (answer questions/do calculations in spaces provided
- reports due next lab session

#### #14: Measurements Do ONLY Parts A and B

# Materials

Ruler Cube/block Calipers Electronic Balance



### #14: Measurements

#### Goals

Part A. To determine the density of a metal cube.

First, you have to measure the mass of the cube. Measure the mass of the cube on the balance.

# When measuring masses, always use the same balance during an experiment. Zero the balance before weighing

200a

0

PRINT

Unit

Scout Pro

ON/ZERO

OR



Scout Pro

BUZERN

200

Date:



# #14: Measurements

#### Goals

Part A.To determine the density of a cube.

Second, you have to measure the dimenions of the cube in inches with the calipers. Then convert to cm so you can calculate the cube's density.

Remember: D = M/V

Use the calipers to measure the length of one edge of the cube in inches. Assume all other edges are the same length.

> Convert inches to cm. Calculate the volume of the cube in cm<sup>3</sup> - see lab book for steps.



# #14: Measurements

#### Goals

Part B. To determine the density of a metal block.

First, you have to measure the mass of the block

Measure the mass of the block on the balance.

Then use a ruler to measure the block's dimensions in cm. Then calculate the block's density.

# Use the rule to meaure the dimensions of the block in cm. This one reads ~ 8.9 cm. This is the long edge.



#### This is the small edge.

5

Quum I



# #14: Measurements Lab Report

Do calculations for Parts A and B on a separate sheet. Show all steps in your calculations for full credit.

Staple the data sheet with the calculation sheet and submit next lab.