11. Organic Chemistry

Many areas rely on organic chemistry

biology petroleum industry polymers genetic engineering agriculture pharmacology consumer products

Organic Chemistry

Organic: overused word

Organic can be biological or chemical term

Biology: anything living or has lived

Chemistry: most substances containing carbon

Originally the study of chemicals extracted from living systems

Today, organic chemistry is the study of compounds containing carbon

Synthesis of urea from ammonium cyanate

Wohler, 1928

IMPORTANCE OF CARBON

basis for all life stable covalent bonds catenation forms C-C C=C C=C forms long chain molecules C-C-C-C-C-C-C-C bonds with most elements infinite number of compounds possible

Rings

cycloberane

Carbon: the element

Exists in 4 allotropic forms:

1. Amorphous

Soot

2. Graphite Sheets of rings which can slip over each other Graphite line

3. Diamond

Tetrahedral arrangement of atoms

Hard

4. Spherical

Composed of rings

CLASSES OF COMPOUNDS

CLASSES OF COMPOUNDS

Classify by how carbon atoms are arranged & what groups attached

Simplest: hydrocarbons

Divided into 2 classes: aliphatic and aromatic

Methane: CH₄

ORGANIC COMPOUNDS

classify by functional group: specific combinations of atoms

hydrocarbons C & H contain only

alcohols R-OH

acids R-COOH

amines R-NH₂

ketones R(C=O)R

aldehydes R-CHO

How do we write formulas, draw structures and name organic compounds?

ORGANIC COMPOUNDS CAN BE COMPLEX

Need a system that shows structure Must be easy to read

LINE REPRESENTATIONS

Write all atoms in single line
Use subscripts, (), and lines
Show special bonds and branches

Drawing Structures

Molecular formula: C₄H₁₀

Line representation: CH₃CH₂CH₂CH₃ formula

Condensed

Drawing Structures

Molecular formula: C₄H₁₀

Line representation: CH₃CH₂CH₂CH₃

CH₃(CH₂)₂CH₃

Ball and stick model

Space filling model

Simplest Aliphatic Hydrocarbons

Series of similar C & H compounds

CH₄ methane

C₂H₆ ethane

C₃H₈ propane

C₄H₁₀ butane

C₅H₁₂ pentane

C₆H₁₄ hexane

 C_nH_{2n+2}

Alkanes

BASE NAMES

Meth	1
Eth	2
Prop	3
But	4
Pent	5
Hex	6
Hept	7
Oct	8
Non	9
Dec	10

Alkanes

Formula and name for 8 carbons?

use standard prefixes
and -ane ending

C₈H₁₈ octane

formula	structure	condensed
CH_4	H H-C-H I H	CH ₄

formula	structure	condensed
CH_4	H H - C - H H	CH ₄
$\mathrm{C_2H_6}$	H H I I H-C-C-H I I H H	CH ₃ CH ₃

formula	structure	condensed
CH_4	H I H-C-H I H	CH ₄
С ₂ Н _б	H H I I H-C-C-H I I H H	CH₃CH₃
$\mathrm{C_3H_8}$	H H H H - C - C - C - H H H H H	CH ₃ CH ₂ CH ₃

formula	structure	condensed
CH_4	H I H-C-H I H	$ ext{CH}_4$
$\mathrm{C_2H_6}$	H H I I H-C-C-H I I H H	CH₃ CH₃
C ₃ H ₈	H H H I	CH₃CH₂CH₃
C ₄ H ₁₀	H H H H I I I I H-C-C-C-C-H I I I H H H H	$\mathrm{CH_3CH_2CH_2CH_3}$

Alkanes

PHYSICAL PROPERTIES

Non-polar molecules
Not water soluble
Low density
Low melting point
Low boiling point

PHYSICAL PROPERTIES

Non-polar molecules
Not water soluble
Low density
Low melting point
Low boiling point

Increase as the number of C atoms increase

See Table 11.1

SOURCES

Hydrogenation of: petroleum shale oil coal

butane

ORGANIC NOMENCLATURE

Naming system must show:

Number of carbons in longest chain

Location of any branches
Where functional groups are (if any)

IUPAC RULES

- 1. Find longest carbon chain. Use as base name ending ane
- 2. Locate any branches on chain. Use base names with yl ending
- 3. For muliple branch of same type, add di, tri, tetra....

IUPAC RULES

Naming system must show:

- 4. Show location of each branch with numbers
- 5. List multiple branches alphabetically
 - the di, tri, tetra don't count

NAMING ALKANES Omit hydrogens

NAMING ALKANES Omit hydrogens

- 1. 6 carbon chain: hex
- 2. Use -ane ending
- 3. Name: hexane

(CH₃)₂CHCH₂CH₂CH(CH₃)₂

Convert from condensed structural formula to simple carbon skeleton

(CH₃)₂CHCH₂CH₂CH(CH₃)₂

Convert from condensed structural formula to simple carbon skeleton

Convert from condensed structural formula to simple carbon skeleton

- 1.
- 2. Two methyl groups dimethyl
- 3. 2,5-dimethylhexane

- 1. 4 carbon chain: but
- 2. Use -ane ending
- 3. Methyl group on second C
- 4. Name: 2-methylbutane

```
C-C-C-C-C

3,5-dimethyl heptane
C-C C
```

```
C-C-C-C-C
         3,5-dimethyl heptane
C-C C
  C-C-C-C C-C-C
    C-C-C-C-C-C
            2,3,3,7,8-pentamethyldecane
```

3,5,5-trimethylheptane
Start with base, draw C skeleton

3,5,5-trimethylheptane

C-C-C-C-C-C

Number carbon atoms

3,3,5-trimethylheptane

Where do the 3 methyl groups go?

3,5,5-trimethylheptane

$$CH_3$$
 CH_3 CH_3 $C_1-C_2-C_3-C_4-C_5-C_6-C_7$ CH_3

3,5,5-trimethylheptane

All carbons have 4 bonds

STRUCTURAL ISOMERS

All have same formula, but different structures and properties

This will be more important later where the isomers can result in different functional groups.

CYCLOALKANES

Cyclic alkanes
General formula: C_nH_{2n}

Named as parent alkane with cyclo prefix

REACTIONS OF ALKANES

1. Combustion

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$

Many alkanes used as fuel

Methane: natural gas

Propane: cooking

Butane: lighters

Gasoline: mixture of hydrocarbons

REACTIONS OF ALKANES

2. Halogenation

CH₄ + Cl₂ → CH₃Cl + HCl Halogen replaces hydrogen

Dichloromethane: paint stripper Chloroform: anesthesia 1,2-dichloroethane: dry cleaning

ALKYL HALIDES

Alkanes with at least 1 halogen replacing hydrogen

General formula: R-X A halogen F, Cl, Br, I

Structure and naming similar to alkanes

ALKYL HALIDES

Halogen Name Symbol

fluorine fluoro – F chlorine chloro – Cl bromine bromo – Br iodine iodo – I

ALKYL HALIDES

Give name and carbon number for halide just like a side branch

C-C-C

CI

1-fluoroethane

2-chloropropane

1-bromo-2-methylpentane

ALKENES AND ALKYNES

Unsaturated hydrocarbons Contain C-C multiple bonds

Alkenes: R-C=C-R

 C_nH_{2n}

Alkynes: R-C≡C-R

 C_nH_{2n-2}

Examples: steroids, unsaturated fats, polymers, prostaglandins

ALKENES AND ALKYNES

Geometry

COLORED ALKENES

Molecules with many double bonds can be colored

Jameson*
Lycopene-Rich
Tomato
Con restricte
The Artic data Pointy of
2 for 1m sites
Nutritional Support
for Bestiley Product
and Skin
to Copies

100mg Organic Tomato Concentrate

10mg Lycopene Nutritional Factor

Molecular Weight: 536.89 Molecular Formula: C40H56

Lycopene

Indicate position of double bond

- 1. Longest C chain must contain double bond
- 2. Number carbons so double bond has lowest number
- 3. Indicate position of double bond

- 4. Change ending to -ene
- 5. Use same rules for side chains and halides

$$C = C - C - C$$

Four carbons: use base butContains double bond: use -ene
Double bond is between first and second: number as 1

1-butene

Multiple double bonds
Number each double bond
Use -diene for two

-triene for three, etc

$$C = C - C = C$$

1,3-butadiene

Similar to alkenes

Use ending -yne C≡C-C-C
1-butyne

MORE EXAMPLES

2-pentene

MORE EXAMPLES

3-chloro-1-butene

MORE EXAMPLES

5-chloro-3-octene

GEOMETRIC ISOMERS

When two or more arrangements of atoms are possible

Alkanes: rotation about all bonds

no geometric isomers

Alkenes: rigid bond

geometric isomers

Alkynes: rigid bond & linear

geometric isomers

GEOMETRIC ISOMERS

Two possible arrangements 2-butene

H₃C H C=C CH₃

cis
largest groups
on same side

cis-2-butene

trans
largest groups
on opposite sides

trans-2-butene

CIS/TRANS ASSIGNMENTS

1. Locate alkene bond

2. Draw out structure in full

CIS/TRANS ASSIGNMENTS

$$CH_3-CH_2-CH=CH-CH_3$$
 H
 CH_3-CH_2
 CH_3-CH_2
 CH_3

CIS/TRANS ASSIGNMENTS

$$CH_3-CH_2-CH=CH-CH_3$$
 H
 CH_3
 $trans-2$ -pentene $C=C$
 CH_3-CH_2

GEOMETRIC ISOMERS

cis-2-butene

trans-2-butene

REACTIONS OF ALKENES

Can react like alkanes
Also react at double bond
Addition reactions common
double bond breaks
atoms added to carbons

$$R-C=C-R \Rightarrow R-C-C-R$$

REACTIONS OF ALKENES

Hydrogentation

Addition of H₂ Forms alkanes

$$R-C=C-R + H_2 \Rightarrow R-C-C-R$$

 $| | |$
 $| H H$

Requires heat, pressure, catalysts - Pt, Pd, Ni

REACTIONS OF ALKENES

Hydrohalogentation

Addition of HX - HF, HCI, HBr, HI Forms haloalkanes

$$R-C=C-R + HX \Rightarrow R-C-C-R$$
 $| | |$
 $| X$

Best represented by benzene
A six carbon ring
Three alternating double bonds
Electrons in bonds spread out

Exists as resonance structure (average)

Best represented by benzene

Resonance Forms of Benzene

Fused rings common

benzene

napthalene

AROMATIC HYDROCARBONS Name benzene derivatives CI CH₃

benzene chlorobenzene methylbenzene

nitro: NO₂ amino: NH₂

Common names

Disubstituted rings

1,2-dichlorobenzene

1,4-dichlorobenzene

1,3- dichlorobenzene

dichlorobenzene

Reactions of benzene

A substitution reaction

Functional groups

specific combinations of atoms

alcohols R-OH acids R-COOH

amines R-NH₂ ethers R-O-R'

aldehydes R-CHO

ketones R(C=O)R'

esters R-COOR'

Esters

Isomerism

Stereoisomers

Two types: geometric isomers optical isomers

cis-trans isomers

Mirror image molecules enantiomers

Isomerism

Stereoisomers Compare left and right hands

Non-superimposable mirror images

Distinguish by D- or L- prefix in name

Not optical isomers

Optical isomers

Isomerism

Optical isomers have chiral center or asymmetric carbon atom

4 different atoms or groups attached

Stereoisomers

Is the red carbon chiral?

