13. SOLUTIONS

Homogeneous mixtures of two components

Why is the study of solutions important?

What solutions are used in the home?

TYPES OF SOLUTIONS

Solid dental fillings, 14 K gold, alloys

Liquid saline, vinegar, sugar water

Gas air

DEFINITIONS

Solvent component in greatest amount Solute component in smaller amount Aqueous Solution (aq) water as solvent

THE SOLUTION PROCESS

Dissolution solute particles surrounded & dispersed by solvent

Solute particles solvated

NaCl (s) → NaCl (aq)

NaCl (s) → Na⁺ (aq) + Cl⁻ (aq)

THE SOLUTION PROCESS

NaCl (s) → Na⁺ (aq) + Cl⁻ (aq)

SOLUBILITY

Quantity of solute that dissolves in specific quantity of solvent at specific temperature At 25°C 36.2 g NaCl dissolves in 100 g water

Saturated Unsaturated Supersaturated

SOLUBILITY: EFFECT OF TEMPERATURE

Solids

solubility increases with temp

Not all substances soluble barium sulfate settles

SOLUBILITY OF GASES

Nonpolar gases only slightly soluble in water

Solubility increases with polarizability of gas molecule

SOLUBILITY: EFFECT OF TEMPERATURE

SOLUBILITY: EFFECT OF PRESSURE

Gases

Solubility increases with pressure of gas

Henry's Law

$$M_g = kP_g$$

Gases from a solid

AUSCHWITZ

Zyklon B, hydrogen cyanide in a solid support plus a warning agent

> 1 million people killed

Forensic analysis confirms presence of cyanide in the buildings

AUSCHWITZ

HCN gas reacts with iron to form blue compound

Prussian Blue staining

Forensic analysis confirms presence of cyanide in the buildings

SOLUBILITY

 $Fe(OH)_3 + 6CN^- \rightarrow 3OH^- + Fe(CN)_6^{3-}$

MYSTERY OF LAKE NYOS

Amount of solute in solution

Mass percent
Mole fraction
Molarity
Molality

Mass percentage: % of solute by mass

%A =
$$\frac{\text{mass of A}}{\text{mass of solution}} \times 100\%$$

Mole fraction: (χ) moles of solute divided by moles of solution

Molarity: (M) moles of solute per liter of solution

Molality: (m) moles of solute per kilogram of solvent

A saturated solution of NaCl has 35.7 g of NaCl per 100.0 g water.

Calculate: 1. Mass %

2. Mole fraction

3. Molality

1. Mass %

$$= \frac{35.7 \text{ g}}{100.0 + 35.7 \text{ g}} \times 100\% = 26.3\%$$

2. Mole fraction of NaCl & water to moles

$$mol_{NaCl} = \frac{35.7 \text{ g}}{58.44 \text{ g NaCl}} = 0.611 \text{ mol NaCl}$$

$$mol_{water} = 100.0 g = 5.549 mol water 18.02 g water$$

Next find fraction of each

2. Mole fraction of NaCl
Add moles of NaCl & water
0.611 mol NaCl
5.549 mol water
6.160 mol solution

<u>0.611 mol NaCl</u> = 0.0992 6.160 mol solution

3. Molality mol NaCl + kg of solvent

<u>0.611 mol NaCl</u> = 6.11 mol/kg 0.1000 kg or 6.11 m

Molality

Ionic substances have greater effect per mole than covalent due to ionization

- 1 mol sugar (s) → 1 mol sugar (aq)
- 1 mol NaCl (s) → 1 mol Na⁺ (aq) + 1 mol Cl⁻ (aq)
 - → 2 mol of ions

Physical properties of solutions relative to pure solvent

Vapor pressure
Boiling point
Freezing point
Osmotic pressure

Effects depend on concentration, not identity

1. Vapor pressure lowering Raoult's Law

Vapor pressure of solvent proportional to its mole fraction

1. Vapor pressure lowering Raoult's Law

2. Boiling point elevation VP lowering affects BP elevation

BP

2. Boiling point elevation Difference in BP called ΔT

K_b = boiling point elevation constant, m = molality

2. Boiling point elevation

$$\Delta T = K_b m$$

 K_b = depends on solvent = 0.52 °C/m for water

See table 13.2

CALCULATIONS

What is the boiling point of a solution of 2.00 mol of sucrose in 175 g of water

= 11.4 m

CALCULATIONS

What is the boiling point of a solution of 20.0 mol of sucrose in 175 g of water

$$\Delta T = K_b m$$

= 0.52 °C/m x 11.4 m = 5.9 °C/m

$$\Delta T = T_b - T_b^{\circ} \Rightarrow T_b = \Delta T + T_b^{\circ}$$

= 100.00 + 5.9 °C
= 105.9 °C

Can use ΔT to find molecular mass of solutes see example 13.9, p. 422

3. Freezing point depression Difference in FP called ΔT

$$\Delta T = T_f - T_f^{\circ}$$
 $\Delta T = K_f m$

K_f = freezing point elevation constant, m = molality

FP of solution always lower than pure solvent

4. Osmosis

Selective passage through semipermeable membranes

4. Osmosis

```
\pi = MRT
```

 π : osmotic pressure

M: molarity

R: gas law constant

T: temp in Kelvin

Reverse Osmosis

Drinking Water
Ice-Making
Car Wash Water
Reclamation
Photography
Pharmaceuticals
Kidney Dialysis

Reverse Osmosis

