Chapter 15

Chemical reactions normally go from reactants to products

 $A + B \rightarrow AB$

When they do not go to completion → equilibrium

$$N_2 + 3 H_2 \rightarrow 2 NH_3$$

$$N_2 + 3 H_2$$

$$N_2 + 3 H_2 \Rightarrow 2 NH_3$$

$$N_2 + 3 H_2 \Rightarrow 2 NH_3$$
Many chemical reactions are reversible

A system where rates of forward and reverse reactions are the same

At equilbrium, no observable changes occur

System remains in equilbrium if undisturbed

System must be closed

$$H_2O(I) \Rightarrow H_2O(s)$$

Physical equilibrium

$$N_2 + 3 H_2 \Rightarrow 2 NH_3$$

Chemical equilibrium

OVERVIEW OF TOPICS

Equilibrium reactions Equilibrium expression Equilibrium constants K_c & K_p Reaction quotient, Q **Equilibrium calculations** Le Chatelier's Principle

EQUILIBRIUM REACTIONS

 $N_2 + 3 H_2 \Rightarrow 2 NH_3$

equilibrium arrow

THE HABER PROCESS

Friz Haber (1868-1935)

$$N_2 + 3 H_2 \rightleftharpoons 2 NH_3$$

EQUILIBRIUM EXPRESSION

$$N_2 + 3 H_2 \Rightarrow 2 NH_3$$

Ratio of products to reactant = constant

$$K_c = \frac{[NH_3]_{eq}^2}{[N_2]_{eq}[H_2]_{eq}^3}$$

[] mean molarity

Terms raised to power of coefficient

EQUILIBRIUM EXPRESSION

In general:

aA + bB
$$\Rightarrow$$
 cC + dD
$$K_c = \frac{[C]^c [D]^d}{[A]^a [B]^b}$$

Need balanced equation

$$aA + bB \Rightarrow cC + dD$$

$$K_c = \frac{[C]_{eq}^{c}[D]_{eq}^{d}}{[A]_{eq}^{a}[B]_{eq}^{b}}$$

K_c: used for molarities. Solutions

$$N_2 + 3 H_2 \Rightarrow 2 NH_3$$

$$K_p = \frac{P^2_{(NH_3)}}{P_{(N_2)} \times P^3_{(H_2)}}$$

K_p: used for pressures. Gases

Closed vrs. Open system

No

Units for K vary

K varies with temperature

K independent of initial concentrations

Large K: reactants → products

Small K: products → reactants

Relationship between Rates and K

At equilibrium $rate_f = rate_r$

$$\frac{k_f}{k_r} = K_c$$

REACTION QUOTIENT

$$aA + bB \Rightarrow cC + dD$$

$$Q = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$

Same equation as K_c Q can be measured at any point in the reaction

REACTION QUOTIENT

$$aA + bB \Rightarrow cC + dD$$

$$Q = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}$$

Q changes as reaction proceeds: initially zero

Q increases and becomes constant at equilibrium then Q = K_c

Predicting reaction direction

Q ≠ K
reactants ⇒ products until equilibrium reached

Predicting reaction direction

```
Q < K
reactants → products
until Q = K
"shifts to right"
```

Predicting reaction direction

If Q > K

products → reactants

until Q = K

"shifts to left"

Predicting reaction direction

If Q = K
reaction at equilibrium

Using equilibrium equations

 $aA + bB \Rightarrow cC + dD$

$$K_c = \frac{[C]_{eq}^{c}[D]_{eq}^{d}}{[A]_{eq}^{a}[B]_{eq}^{b}}$$

- $K_c = \frac{[C]_{eq}^{c}[D]_{eq}^{d}}{[A]_{eq}^{a}[B]_{eq}^{b}}$ 1. If [A], [B], [C], [D] known, can find known, can find K_c
 - 2. If [A], [B], [C], K_c known, can find [D]

Using equilibrium equations $aA + bB \Rightarrow cC + dD$

$$K_c = \frac{[C]_{eq}^{c}[D]_{eq}^{d}}{[A]_{eq}^{a}[B]_{eq}^{b}}$$

 $K_c = \frac{[C]_{eq}^{c}[D]_{eq}^{d}}{[A]_{eq}^{a}[B]_{eq}^{b}}$ 3. If initial concentrations known, can find known, can find equilibrium concentrations

Steps for solving #3

- 1. Need balanced equation & expression for Q
- 2. Calculate Q from given initial concentrations
- 3. How will changing concentrations affect equilibrium?

Steps for solving #3

- Call smallest change x (∆ in book) and express other changes in terms of x
- 2. Substitute x terms and solve for x

Example

 $PCl_5 \Rightarrow PCl_3 + Cl_2 \quad K = 0.0211$

A flask contains PCI₅ with a concentration of 1.00 M. Calculate the concentrations of all reactants and products when equilibrium is reached

Given: $[PCl_5]_i = 1.00M$

Find: $[PCI_5]_{eq}$ $[PCI_3]_{eq}$ $[CI_2]_{eq}$

$$PCI_5 \Rightarrow PCI_3 + CI_2 \quad K = 0.0211$$

$$Q = \frac{[PCl_3]_i[Cl_2]_i}{[PCl_5]_i}$$

Given:

$$[PCl_5]_i = 1.00M$$

 $[PCl_3]_i = 0$
 $[Cl_2]_i = 0$

$$PCI_5 \Rightarrow PCI_3 + CI_2 \quad K = 0.0211$$

$$Q = \frac{[PCl_3]_i [Cl_2]_i}{[PCl_5]_i}$$

$$Q = \frac{0 \times 0}{1.00} = 0$$

Since Q < K reaction proceeds forward

$$PCl_5 \Rightarrow PCl_3 + Cl_2 \quad K = 0.0211$$

$$K_c = \frac{[PCl_3]_{eq}[Cl_2]_{eq}}{[PCl_5]_{eq}} = 0.0211$$

Problem: have three unknowns

$$\frac{x \times y}{z} = 10$$

Have three unknowns

If
$$y = 4x$$
 and $z = 2x$

$$\frac{[PCl_3]_{eq}[Cl_2]_{eq}}{[PCl_5]_{eq}} = 0.0211$$

$$\frac{[PCl_3]_{eq}[Cl_2]_{eq}}{[PCl_5]_{eq}} = 0.0211$$

$$[PCI_5]_{eq} = 1.00-x$$

$$[PCl_3]_{eq} = X$$

$$[Cl_2]_{eq} = X$$

$$\frac{x \times x}{1.00 - x} = 0.0211$$

$$\Rightarrow$$
 $x^2 = 0.0211 \times (1.00 - x)$

$$\Rightarrow x^2 = 0.0211 - 0.0211x$$

$$\Rightarrow x^2 + 0.0211x - 0.0211 = 0$$

$$x^2 + 0.0211x - 0.0211 = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \qquad ax^2 + bx + c = 0$$

see page 485

$$a = 1$$
 $b = 0.0211$ $c = -0.0211$
 $x = 0.135$ ignore negative answer

A system in equilibrium, when subjected to a change, will act to counteract the change and establish a new equilibrium

1. Changing concentration

 $A + B \Rightarrow C + D$

What happens when reactants added or removed?

Products

Reactants additional reactants.

A Temporary imbalance

2. Changing pressure (gas)

Depends on number of reactant and product molecules in equation

$$H_2 + CO_2 \Rightarrow H_2O + CO$$

changing pressure has no effect

2. Changing pressure

$$2SO_2 + O_2 \Rightarrow 2SO_3$$

Increasing pressure causes shift forward

3. Changing temperature

Depends on whether reaction is endothermic or exothermic

```
N_2 + 3 H_2 \Rightarrow 2 NH_3 \Delta H = -92.4kJ
```

$$N_2 + 3 H_2 \Rightarrow 2 NH_3 + 92.4kJ$$

- ↑ T adds heat → eqm to shift back
- ↓ T removes heat → eqm to shift forward

4. Changing volume

$$V \propto \frac{1}{P}$$

Opposite of changing pressure

5. Addition of catalyst

Speeds up rate equilibrium reached in both directions