Acids and Bases Acids: vinegar, lemons, gastric juice Bases: ammonia, baking soda, drano Salts: table salt ### **Acids** ### **Properties** - Acids: 1. sour - 2. change color of dyes - 3. dissolve metals to form hydrogen - 4. react with carbonates to form CO₂ - 5. neutralize bases water soluble acids form hydrogen ions #### **Bases** ### **Properties** Bases: 1. bitter - 2. change color of dyes - 3. soapy feel - 4. neutralize acids In water, soluble bases can form OH⁻ or CO₃²⁻ or O²⁻ ions These ions react with H⁺ ions NH₃ another common base Sir Humphry Davy (1811) All acids contain hydrogen HCI H₂SO₄ HNO₃ # **Safety Lamp** Savante Arrhenius (1884) Acid: any substance that produces hydrogen ions in water Base: any substance that produces hydroxide ions in water Savante Arrhenius (1884) Acid: any substance that produces hydrogen ions in water Base: any substance that produces hydroxide ions in water Definition limited to aqueous solutions **Bronsted -Lowry Definition (1923)** Acid: proton donor Base: proton acceptor Explains why ammonia is a base **Bronsted -Lowry Definition (1923)** Acid: proton donor Base: proton acceptor $$NH_3 + H_2O \rightarrow NH_4^+ + OH^-$$ # Strong Acids/Bases ## **lonize completely** Hydrochloric acid # Strong Acids/Bases Ionize completely NaOH (aq) $$\rightarrow$$ Na⁺ (aq) + OH⁻ (aq) ### Weak Acids/Bases ### Incomplete ionization $$HC_2H_3O_2 \Rightarrow H^+ + C_2H_3O_2^-$$ $$NH_3 + H_2O \Rightarrow NH_4^+ + OH^-$$ Note: water acts as an acid Water can also act as a base ### **Autoionization of water** Water is amphiprotic Can act either as acid or base ### Weak Acids/Bases ### Incomplete ionization $$HC_2H_3O_2 \Rightarrow H^+ + C_2H_3O_2^-$$ $HC_2H_3O_2 + H_2O \Rightarrow H_3O^+ + C_2H_3O_2^-$ H₃O⁺ called hydronium ion $$H_2O + H^+ \rightarrow H_3O^+$$ # Conjugate Acids/Bases # Acids and bases that are related by loss or gain of H⁺ | <u>CA</u> | <u>CB</u> | |-------------------|-----------------| | H_3O^+ | H_2O | | $\mathbf{NH_4^+}$ | NH_3 | | H_3PO_4 | HPO_4^{-2} | | HCl | Cl ⁻ | ### Common Acids/Bases Acids citrus fruits aspirin Coca Cola vinegar vitamin Bases baking soda detergents ammonia cleaners Tums & Rolaids soap ### Common Acids/Bases | Acids | Formula | Molarity | |--------------|----------------|-----------------| | nitric | HNO_3 | 16 | | hydrochloric | HCI | 12 | | sulfuric | H_2SO_4 | 18 | | acetic | $HC_2H_3O_2$ | 18 | Bases Formula Molarity ammonia NH₃ 18 sodium hydroxide NaOH solid ### **Common Acids** All are corrosive HCI cleans metals, brick, cement H₂SO₄ car batteries, fertilizers, industrial chemicals, nitroglycerin HNO₃ fertilizers, dyes, plastics, explosives # H₂SO₄ # **Assassination of President McKinley** ### **Common Bases** NaOH drain cleaner, soap manufacture Ca(OH)₂ lime, mortar, plaster, cement NH₃ cleaner Mg(OH)₂ milk of magnesia Drugs: cocaine, morphine, nicotine ### **Autoionization of water** Water is amphiprotic $$H_2O + H_2O \Rightarrow H_3O^+ + OH^-$$ $$K_{w} = [H_{3}O^{+}][OH^{-}]$$ $$= 1.0 \times 10^{-14}$$ at 25° C [H₂O] is constant, included in K_w ### **Autoionization of water** H⁺ and OH⁻ always present in aqueous solutions Only for a neutral solution are their concentrations equal # pH scale Neutral $$[H^{+}] = 10^{-7} M = [OH^{-}]$$ Acidic $$[H^{+}] > 10^{-7} M > [OH^{-}]$$ Basic $$[H^{+}] < 10^{-7} M < [OH^{-}]$$ # pH scale Scale to measure acid and base concentrations over large concentration range # pH Scale $$pH = - log [H^{\dagger}]$$ Logarithmic scale $$pOH = - \log [OH^{-}]$$ $$pH + pOH = 14$$ # pH scale scale: 0-14 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Stronger acid **Stronger base** # pH Scale # **Measures** acidity ## pH calculations Find pH of 0.015 M HCI HCI $$\rightarrow$$ H⁺ + CI⁻ 0.015 M HCI \rightarrow 0.015 M H⁺ + 0.015 M CI⁻ pH = - log[H⁺] = - log [0.015] = 1.8 ## pH calculations Find pH of 0.30 M Ca(OH)₂ $$Ca(OH)_2 \rightarrow Ca^{2+} + 2OH^{-}$$ 0.3 M \rightarrow 2 x 0.3 M = 0.6 M OH⁻ $$[H^{+}][OH^{-}] = 10^{-14}$$ $[H^{+}] = 10^{-14} \div [OH^{-}] = 10^{-14} \div 0.6$ $= 1.7 \times 10^{-14} M$ $$pH = -log(1.7 \times 10^{-14}) = 13.8$$ ## pH calculations Find [H⁺] for HCI solution having pH = 9.0 $9.0 = - \log [H^{+}]$ find antilog $[H^{+}] = 1.0 \times 10^{-9} M$ If $[OH^{-}]$ needed use $[H^{+}][OH^{-}] = 10^{-14}$ # Acid dissociation constant, K_a Ionization of weak acids is equilibrium $$HA (aq) + H2O (I) \Rightarrow H3O+(aq) + A-(aq)$$ $$K_a = \frac{[H_3O^+][A^-]}{[HA]}$$ Weak acid strength related to K_a Note: water omitted from expression # Base dissociation constant, K_b Ionization of weak bases is equilibrium $$B_{(aq)} + H_2O_{(l)} \Rightarrow B^{\dagger}_{(aq)} + OH^{-}_{(aq)}$$ $$K_b = \frac{[OH^-][BH^+]}{[B]}$$ Weak base strength related to K_b Note: water omitted from expression # K_a and K_b values Always < 1 Size of K_a indicates acid strength Size of K_b indicates base strength Most acids and bases are weak For a conjugate acid-base pair: $$K_a \times K_b = 10^{-14}$$ # What are polyprotic acids? - Possess two or more replaceable protons (H⁺) - Examples of polyprotic acids are: - Carbonic acid H₂CO₃ - Phosphoric acid H₃PO₄ - Citric acid a tricarboxylic acid # Polyprotic acids $$H_2SO_4 \Rightarrow H^+ + HSO_4^-$$ $HSO_4^- \Rightarrow H^+ + SO_4^{2-}$ More difficult to remove each subsequent H⁺ # pH of weak acid solutions Find the pH of a 0.05 M acetic acid solution $$K_a \text{ for } HC_2H_3O_2 = 1.8 \times 10^{-5}$$ $HC_2H_3O_2 \Rightarrow H^+ + C_2H_3O_2^-$ Find the pH of a 0.05 M acetic acid solution $$K_a \text{ for } HC_2H_3O_2 = 1.8 \times 10^{-5}$$ $HC_2H_3O_2 \Rightarrow H^+ + C_2H_3O_2^-$ $$K_{a} = \frac{[H^{+}]_{eq}[C_{2}H_{3}O_{2}^{-}]_{eq}}{[HC_{2}H_{3}O_{2}]_{eq}}$$ $$HC_2H_3O_2 \Rightarrow H^+ + C_2H_3O_2^-$$ [initial] 0.050 M 0 0 Change -x +x +x [equ] 0.050-x x x Solve for x $$\frac{x \times x}{0.050 - x} = 1.8 \times 10^{-5}$$ $$\frac{x \times x}{0.050 - x} = 1.8 \times 10^{-5}$$ Use quadratic equation to solve x $$X = 9.24 \times 10^{-4} = [H^{\dagger}]_{eq}$$ $$pH = -\log(9.24 \times 10^{-4}) = 3.03$$ #### Salts Product of acid + base reaction HCI + NaOH → NaCI + H₂O when an acid reacts with a base a salt and water form when the base is a carbonate also form CO₂ gas ### **Some Reactions** Mg + 2 HCl $$\rightarrow$$ MgCl₂ + H₂ HCl + NaOH \rightarrow NaCl + H₂O #### **Both are neutralization reactions** #### **Titrations** Methods based on volume Need: buret, pipet, balance, indicator 2 moles acid = 1 mole base $$2 M_A V_A = 1 M_B V_B$$ $$2 M_A V_A = 1 \underline{\text{mass}}_B$$ form. Wt._B ### **Indicators** Weak organic acids H-Indic = Indic + H⁺ color 1 color 2 Change color at end-point Coincides with equivalence point | pH Range | Color | Name | |----------|-------|--------------------| | 0.1-1.8 | | Crystal Violet | | 1.0-2.0 | | Cresol Red | | 1.2-2.8 | | Thymol Blue | | 2.7-4.0 | | 2,4-Dinitrophenol | | 3.0-4.6 | | Bromophenol Blue | | 3.1-4.4 | | Methyl Orange | | 3.8-5.4 | | Bromocresol Green | | 4.2-6.3 | | Methyl Red | | 5.0-6.4 | | Eriochrome Black T | | 5.2-6.8 | | Bromocresol Purple | | 6.2-7.6 | | Bromothymol Blue | | 6.8-8.4 | | Phenol Red | | 6.8-8.6 | | m-Nitrophenol | | 8.3-10.0 | | Phenolphthalein | | 9.3-10.5 | | Thymolphthalein | | | | | ## pH of ions Acid: NH₄⁺ Al³⁺ HSO₄⁻ Fe³⁺ Base: CH₃ COO⁻ CN⁻ S²⁻ F⁻ O²⁻ CO₃²⁻ Neutral: group 1,2 metal ions CIO₄ Cl Br l NO₃ SO₄ SO₄ - ## pH of ions Predict the following: ammonium chloride calcium nitrate lithium sulfide ammonium acetate ## pH of ions Find the pH of a 0.10 M KCH₃COO solution Write ionization equation $$KCH_3COO \rightarrow K^+ + CH_3COO^ CH_3COO^- + H_2O \rightarrow CH_3COOH + OH^-$$ Find $[OH^-] \rightarrow [H^+] \rightarrow pH$ ### **Neutralization** Strong acid + strong base → neutral Strong acid + weak base → weak acid Weak acid + strong base → weak base Weak acid + weak base → ? # Lewis acid-base theory Acids: acept pair of electrons Positive ions: H⁺ Ag⁺ BF₃ Bases: donate pair of electrons Negative ions: F⁻ OH⁻ NH₃