### **Acids and Bases**

Acids: vinegar, lemons, gastric juice

Bases: ammonia, baking soda, drano

Salts: table salt

### **Acids**

### **Properties**

- Acids: 1. sour
  - 2. change color of dyes
  - 3. dissolve metals to form hydrogen
  - 4. react with carbonates to form CO<sub>2</sub>
    - 5. neutralize bases

water soluble acids form hydrogen ions

#### **Bases**

### **Properties**

Bases: 1. bitter

- 2. change color of dyes
- 3. soapy feel
- 4. neutralize acids

In water, soluble bases can form OH<sup>-</sup> or CO<sub>3</sub><sup>2-</sup> or O<sup>2-</sup> ions
These ions react with H<sup>+</sup> ions

NH<sub>3</sub> another common base

Sir Humphry Davy (1811)

All acids contain hydrogen



HCI H<sub>2</sub>SO<sub>4</sub> HNO<sub>3</sub>

# **Safety Lamp**





Savante Arrhenius (1884)

Acid: any substance that produces hydrogen ions in water



Base: any substance that produces hydroxide ions in water

Savante Arrhenius (1884)

Acid: any substance that produces hydrogen ions in water

Base: any substance that produces hydroxide ions in water

Definition limited to aqueous solutions

**Bronsted -Lowry Definition (1923)** 

Acid: proton donor

Base: proton acceptor

Explains why ammonia is a base

**Bronsted -Lowry Definition (1923)** 

Acid: proton donor

Base: proton acceptor

$$NH_3 + H_2O \rightarrow NH_4^+ + OH^-$$

# Strong Acids/Bases

## **lonize completely**



Hydrochloric acid

# Strong Acids/Bases

Ionize completely

NaOH (aq) 
$$\rightarrow$$
 Na<sup>+</sup> (aq) + OH<sup>-</sup> (aq)

### Weak Acids/Bases

### Incomplete ionization

$$HC_2H_3O_2 \Rightarrow H^+ + C_2H_3O_2^-$$

$$NH_3 + H_2O \Rightarrow NH_4^+ + OH^-$$

Note: water acts as an acid

Water can also act as a base

### **Autoionization of water**

Water is amphiprotic

Can act either as acid or base

### Weak Acids/Bases

### Incomplete ionization

$$HC_2H_3O_2 \Rightarrow H^+ + C_2H_3O_2^-$$
  
 $HC_2H_3O_2 + H_2O \Rightarrow H_3O^+ + C_2H_3O_2^-$ 

H<sub>3</sub>O<sup>+</sup> called hydronium ion

$$H_2O + H^+ \rightarrow H_3O^+$$

# Conjugate Acids/Bases

# Acids and bases that are related by loss or gain of H<sup>+</sup>

| <u>CA</u>         | <u>CB</u>       |
|-------------------|-----------------|
| $H_3O^+$          | $H_2O$          |
| $\mathbf{NH_4^+}$ | $NH_3$          |
| $H_3PO_4$         | $HPO_4^{-2}$    |
| HCl               | Cl <sup>-</sup> |

### Common Acids/Bases

Acids
citrus fruits
aspirin
Coca Cola
vinegar
vitamin

Bases
baking soda
detergents
ammonia cleaners
Tums & Rolaids
soap

### Common Acids/Bases

| Acids        | <b>Formula</b> | <b>Molarity</b> |
|--------------|----------------|-----------------|
| nitric       | $HNO_3$        | 16              |
| hydrochloric | HCI            | 12              |
| sulfuric     | $H_2SO_4$      | 18              |
| acetic       | $HC_2H_3O_2$   | 18              |

Bases Formula Molarity ammonia NH<sub>3</sub> 18 sodium hydroxide NaOH solid

### **Common Acids**

All are corrosive

HCI cleans metals, brick, cement

H<sub>2</sub>SO<sub>4</sub> car batteries, fertilizers, industrial chemicals, nitroglycerin

HNO<sub>3</sub> fertilizers, dyes, plastics, explosives

# H<sub>2</sub>SO<sub>4</sub>

# **Assassination of President McKinley**

### **Common Bases**

NaOH drain cleaner,

soap manufacture

Ca(OH)<sub>2</sub> lime, mortar, plaster, cement

NH<sub>3</sub> cleaner

Mg(OH)<sub>2</sub> milk of magnesia

Drugs: cocaine, morphine, nicotine

### **Autoionization of water**

Water is amphiprotic

$$H_2O + H_2O \Rightarrow H_3O^+ + OH^-$$

$$K_{w} = [H_{3}O^{+}][OH^{-}]$$

$$= 1.0 \times 10^{-14}$$
 at  $25^{\circ}$ C

[H<sub>2</sub>O] is constant, included in K<sub>w</sub>

### **Autoionization of water**

H<sup>+</sup> and OH<sup>-</sup> always present in aqueous solutions

Only for a neutral solution are their concentrations equal

# pH scale

Neutral 
$$[H^{+}] = 10^{-7} M = [OH^{-}]$$

Acidic 
$$[H^{+}] > 10^{-7} M > [OH^{-}]$$

Basic 
$$[H^{+}] < 10^{-7} M < [OH^{-}]$$

# pH scale

Scale to measure acid and base concentrations over large concentration range

# pH Scale

$$pH = - log [H^{\dagger}]$$

Logarithmic scale

$$pOH = - \log [OH^{-}]$$

$$pH + pOH = 14$$

# pH scale

scale: 0-14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14



Stronger acid

**Stronger base** 

# pH Scale

# **Measures** acidity



## pH calculations

Find pH of 0.015 M HCI

HCI 
$$\rightarrow$$
 H<sup>+</sup> + CI<sup>-</sup>  
0.015 M HCI  $\rightarrow$  0.015 M H<sup>+</sup> + 0.015 M CI<sup>-</sup>  
pH = - log[H<sup>+</sup>] = - log [0.015] = 1.8

## pH calculations

Find pH of 0.30 M Ca(OH)<sub>2</sub>

$$Ca(OH)_2 \rightarrow Ca^{2+} + 2OH^{-}$$
  
0.3 M  $\rightarrow$  2 x 0.3 M  
= 0.6 M OH<sup>-</sup>

$$[H^{+}][OH^{-}] = 10^{-14}$$
  
 $[H^{+}] = 10^{-14} \div [OH^{-}] = 10^{-14} \div 0.6$   
 $= 1.7 \times 10^{-14} M$ 

$$pH = -log(1.7 \times 10^{-14}) = 13.8$$

## pH calculations

Find [H<sup>+</sup>] for HCI solution having pH = 9.0

 $9.0 = - \log [H^{+}]$ 

find antilog

 $[H^{+}] = 1.0 \times 10^{-9} M$ 

If  $[OH^{-}]$  needed use  $[H^{+}][OH^{-}] = 10^{-14}$ 

# Acid dissociation constant, K<sub>a</sub>

Ionization of weak acids is equilibrium

$$HA (aq) + H2O (I) \Rightarrow H3O+(aq) + A-(aq)$$

$$K_a = \frac{[H_3O^+][A^-]}{[HA]}$$

Weak acid strength related to K<sub>a</sub>

Note: water omitted from expression

# Base dissociation constant, K<sub>b</sub>

Ionization of weak bases is equilibrium

$$B_{(aq)} + H_2O_{(l)} \Rightarrow B^{\dagger}_{(aq)} + OH^{-}_{(aq)}$$

$$K_b = \frac{[OH^-][BH^+]}{[B]}$$

Weak base strength related to K<sub>b</sub> Note: water omitted from expression

# K<sub>a</sub> and K<sub>b</sub> values

Always < 1

Size of K<sub>a</sub> indicates acid strength

Size of K<sub>b</sub> indicates base strength

Most acids and bases are weak

For a conjugate acid-base pair:

$$K_a \times K_b = 10^{-14}$$

# What are polyprotic acids?

- Possess two or more replaceable protons (H<sup>+</sup>)
- Examples of polyprotic acids are:
  - Carbonic acid
     H<sub>2</sub>CO<sub>3</sub>
  - Phosphoric acid H<sub>3</sub>PO<sub>4</sub>
  - Citric acid a tricarboxylic acid

# Polyprotic acids

$$H_2SO_4 \Rightarrow H^+ + HSO_4^-$$
  
 $HSO_4^- \Rightarrow H^+ + SO_4^{2-}$ 

More difficult to remove each subsequent H<sup>+</sup>

# pH of weak acid solutions

Find the pH of a 0.05 M acetic acid solution

$$K_a \text{ for } HC_2H_3O_2 = 1.8 \times 10^{-5}$$
  
 $HC_2H_3O_2 \Rightarrow H^+ + C_2H_3O_2^-$ 

Find the pH of a 0.05 M acetic acid solution

$$K_a \text{ for } HC_2H_3O_2 = 1.8 \times 10^{-5}$$
  
 $HC_2H_3O_2 \Rightarrow H^+ + C_2H_3O_2^-$ 

$$K_{a} = \frac{[H^{+}]_{eq}[C_{2}H_{3}O_{2}^{-}]_{eq}}{[HC_{2}H_{3}O_{2}]_{eq}}$$

$$HC_2H_3O_2 \Rightarrow H^+ + C_2H_3O_2^-$$
[initial] 0.050 M 0 0
Change -x +x +x
[equ] 0.050-x x x

Solve for x

$$\frac{x \times x}{0.050 - x} = 1.8 \times 10^{-5}$$

$$\frac{x \times x}{0.050 - x} = 1.8 \times 10^{-5}$$

Use quadratic equation to solve x

$$X = 9.24 \times 10^{-4} = [H^{\dagger}]_{eq}$$

$$pH = -\log(9.24 \times 10^{-4}) = 3.03$$

#### Salts

Product of acid + base reaction

HCI + NaOH → NaCI + H<sub>2</sub>O

when an acid reacts with a base a salt and water form

when the base is a carbonate also form CO<sub>2</sub> gas

### **Some Reactions**

Mg + 2 HCl 
$$\rightarrow$$
 MgCl<sub>2</sub> + H<sub>2</sub>  
HCl + NaOH  $\rightarrow$  NaCl + H<sub>2</sub>O

#### **Both are neutralization reactions**

#### **Titrations**

Methods based on volume

Need: buret, pipet, balance, indicator

2 moles acid = 1 mole base

$$2 M_A V_A = 1 M_B V_B$$

$$2 M_A V_A = 1 \underline{\text{mass}}_B$$
  
form. Wt.<sub>B</sub>

### **Indicators**

Weak organic acids

H-Indic = Indic + H<sup>+</sup>

color 1 color 2

Change color at end-point

Coincides with equivalence point

| pH Range | Color | Name               |
|----------|-------|--------------------|
| 0.1-1.8  |       | Crystal Violet     |
| 1.0-2.0  |       | Cresol Red         |
| 1.2-2.8  |       | Thymol Blue        |
| 2.7-4.0  |       | 2,4-Dinitrophenol  |
| 3.0-4.6  |       | Bromophenol Blue   |
| 3.1-4.4  |       | Methyl Orange      |
| 3.8-5.4  |       | Bromocresol Green  |
| 4.2-6.3  |       | Methyl Red         |
| 5.0-6.4  |       | Eriochrome Black T |
| 5.2-6.8  |       | Bromocresol Purple |
| 6.2-7.6  |       | Bromothymol Blue   |
| 6.8-8.4  |       | Phenol Red         |
| 6.8-8.6  |       | m-Nitrophenol      |
| 8.3-10.0 |       | Phenolphthalein    |
| 9.3-10.5 |       | Thymolphthalein    |
|          |       |                    |

## pH of ions

Acid: NH<sub>4</sub><sup>+</sup> Al<sup>3+</sup> HSO<sub>4</sub><sup>-</sup> Fe<sup>3+</sup>

Base: CH<sub>3</sub> COO<sup>-</sup> CN<sup>-</sup> S<sup>2-</sup> F<sup>-</sup> O<sup>2-</sup> CO<sub>3</sub><sup>2-</sup>

Neutral: group 1,2 metal ions

CIO<sub>4</sub> Cl Br l NO<sub>3</sub> SO<sub>4</sub> SO<sub>4</sub> -

## pH of ions

Predict the following:
ammonium chloride
calcium nitrate
lithium sulfide
ammonium acetate

## pH of ions

Find the pH of a 0.10 M KCH₃COO solution Write ionization equation

$$KCH_3COO \rightarrow K^+ + CH_3COO^ CH_3COO^- + H_2O \rightarrow CH_3COOH + OH^-$$
Find  $[OH^-] \rightarrow [H^+] \rightarrow pH$ 

### **Neutralization**

Strong acid + strong base → neutral

Strong acid + weak base → weak acid

Weak acid + strong base → weak base

Weak acid + weak base → ?

# Lewis acid-base theory

Acids: acept pair of electrons Positive ions: H<sup>+</sup> Ag<sup>+</sup> BF<sub>3</sub>

Bases: donate pair of electrons Negative ions: F<sup>-</sup> OH<sup>-</sup> NH<sub>3</sub>