Chapter 18

THERMODYNAMICS

Branch of science that studies changes in energy which accompany physical or chemical changes

Can predict if reactions occur

Organized around 3 fundamental laws: 1st, 2nd, 3rd laws of thermodynamics

First Law

Energy can be converted from one form to another; can't be created or destroyed Total energy of the universe is constant

Enthalpy, H (J or kJ) = heat of reaction at constant pressure

Second Law

Spontaneous changes increase entropy of the universe

Third Law

Entropy of a perfect crystalline substance at 0 K is zero

All molecular motion stops at 0 K

This represents perfect order

Spontaneous Processes

Can we predict a spontaneous reaction?

alkane burning in oxygen

acid + base

iron rusting

Exothermic reactions often spontaneousNot necessarily fast

Spontaneous Processes

2 HgO (s) \rightarrow 2 Hg (l)+ O₂ (g) Δ H°= 91 kJ

What other factors relevant?

Entropy, S

Measures randomness or disorder of a system

High S → **high disorder**

Order/disorder related to probability (p)

Entropy, S

Measures randomness or disorder of a system

High S → **high disorder**

Order/disorder related to probability (p)

Entropy, S

Entropy, S

 $p = \frac{1}{2}$ atom being on either side

Entropy, S

$$p = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$$
 atoms being on same side $= (\frac{1}{2})^2$

Entropy, S

What is probability of N atoms going into same side?

$$p = (\frac{1}{2})^{N}$$

If $N = 100 \implies p = (\frac{1}{2})^{100} \implies 8 \times 10^{-31}$

Entropy, S

Ordered states: low p
Disordered states: high p

S° at 1 atm, 25 °C
Values in table 18.1, appendix 2

Entropy, S

S for $H_2O(I) = 70 \text{ J/K.mol at } 25^{\circ}C$ S for $H_2O(g) = 189$

 $S_{solid} < S_{liquid} < S_{gas}$

solvent + solute - solution

Dissolution of NaCl increases entropy

Less randomness (less entropy)

AS>0 AS>0 AS<0NaCl

 $NaCl(s) + H_2O(I)$

More randomness (more entropy)

$$Na^+(aq) + Cl^-(aq)$$

Change in Entropy, ΔS

$$\Delta S = S_{\text{final}} - S_{\text{initial}}$$

When
$$S_{\text{final}} > S_{\text{initial}} \rightarrow \Delta S > 0$$

Sincreases when s → I I → g

Calculating ΔS

$$aA+bB \rightarrow cC+dD$$

$$\Delta S^{\circ} = [c S^{\circ}_{(C)} + d S^{\circ}_{(D)}] - [a S^{\circ}_{(A)} + b S^{\circ}_{(B)}]$$

S° values from tables

When products are gases ΔS° is + When products are s or I, ΔS° is -

Free Energy ΔG

S or H alone can't predict spontaneity

 ΔH° (-) or ΔS° (+) often spontaneous

 $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$

When ΔG° < 0 spontaneous forward

When $\Delta G^{\circ} > 0$ spontaneous reverse

When $\Delta G^{\circ} = 0$ system at equilibrium

Calculating ΔG

$$aA+bB \rightarrow cC+dD$$

$$\Delta G^{\circ} = [c\Delta G_{f^{\circ}(C)} + d\Delta G_{f^{\circ}(D)}] - [a\Delta G_{f^{\circ}(A)} + b\Delta G_{f^{\circ}(B)}]$$

ΔG_f° free energy of formationvalues from tables in append. 2

Large (-) ΔG° means spontaneous

How do ΔH & ΔS affect ΔG ?

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

- 1. If ΔH° and ΔS° (+) ΔG° (-) only when T is large
- 2. If ΔH° (+) and ΔS° (-) ΔG° always (+) forward reaction not spontaneous

How do ΔH & ΔS affect ΔG ?

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

- 3. If ΔH° (-) and ΔS° (+) ΔG° always (-) forward reaction spontaneous
- 4. If ΔH° and ΔS° (-) ΔG° (-) only when T is small

Equilibrium and ΔG

 $\Delta G^{\circ} = -2.303 \text{ RT log K (or -RTlnK)}$

R = 8.31 J/K.mol

As ΔG° becomes more (-): K increases

Equilibrium and ΔG

 $\Delta G^{\circ} = -2.303 \text{ RT log K}$

 $\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$

 ΔH° - $T\Delta S^{\circ}$ = - 2.303 RT log K