NUCLEAR CHEMISTRY

Nuclear reactions

reactions involve atomic nuclei lead to changes in atoms

conversion of an atom into another

Isotopes

atoms having same atomic number but different mass number

oxygen-17

Nuclear reactions

reactions involve atomic nuclei lead to changes in atoms

conversion of an atom into another

Isotopes

atoms having same atomic number but different mass number

oxygen-17 ¹⁷ ₈ O

Two sources of radioactivity

Natural radioactivity isotopes present sincethe earth formed eg uranium-238 or 235 or produced by cosmic rays from the sun eg carbon-14

Synthetic radioactivity

isotopes made in nuclear reactors when atoms are split (fission). Cyclotrons, particle accelerators

Normal chemical reactions involve electrons Valence electrons

► unstable atoms ⇒ stable atoms

► unstable atoms ⇒ stable atoms

Our understanding of atomic structure came from studies of radioactive elements

the process by which atoms spontaneously emit high energy particles or rays from their nucleus

Radioactivity unknown before 20th century

Discovered by Röntgen and Becquerel Röntgen discovered X-rays in cathode ray tubes in 1895

Wilhelm Röntgen (1845-1923)

Röntgen:rays produced a fog on photographic plates

World's first X-ray: Bertha Röntgen's hand

Becquerel (1845-1923) U compounds produced fog on photographic plates

Discovered (1896) it was naturally radioactive

1867-1934

Showed other elements thorium- were radioactive With Pierre Curie, discovered and isolated new elements: radium, polonium

Radium millions of times more active than uranium

Good for nervous disorders, insomnia, general debility, arthritis, and rheumatism.

This large pottery crock was lined with radium ore

Vita Radium Suppositories (ca.1930)

$\begin{array}{c} \text{Common particles}\\ {}^{4}_{2}\text{He} & {}^{0}_{-1}\text{e} & {}^{1}_{1}\text{H} \\ \end{array}$

 $\int_{0}^{1} n \qquad \frac{\mathbf{0}}{\mathbf{0}} \gamma$

Types of Nuclear Reactions

1. Radioactive decay: unstable nucleus

2. Transmutation: Atoms change into new atoms

Types of Nuclear Reactions

3. Fission:

Heavy into lighter nucleus

4. Fusion

Light into heavier nucleus

$^{226}_{88}$ Ra $\rightarrow ^{222}_{86}$ Rn $+ ^{4}_{2}$ He

Atomic numbers must equal Mass numbers must equal

$_{35}^{82}$ Br $\rightarrow \quad _{36}^{82}$ Kr $+ \quad _{-1}^{0}$ e

How can electrons come from nucleus?

$$^{82}_{35}$$
Br \rightarrow $^{82}_{36}$ Kr $+$ $^{0}_{-1}$ e

How can electrons come from nucleus?

${}^{1}_{0}\mathbf{n} \rightarrow {}^{1}_{1}\mathbf{H} + {}^{0}_{-1}\mathbf{e}$

${}^{9}_{4}\text{Be} + {}^{4}_{2}\text{He} \rightarrow {}^{12}_{6}\text{C} + ?$

${}^{9}_{4}\text{Be} + {}^{4}_{2}\text{He} \rightarrow {}^{12}_{6}\text{C} + {}^{1}_{0}?$

${}^{9}_{4}\text{Be} + {}^{4}_{2}\text{He} \rightarrow {}^{12}_{6}\text{C} + {}^{1}_{0}\text{n}$

$_{7}^{14}N + _{2}^{4}He \rightarrow ? + _{1}^{1}H$

$_{7}^{14}N + _{2}^{4}He \rightarrow _{8}^{17}O + _{1}^{1}H$

Energy released $\Delta E = \Delta m \times c^2$

Convert: Atomic Mass Units (amu) into kg 1 amu = 1.66 × 10⁻²⁷ kg Mass (kg) = mass number × 1.66 × 10⁻²⁷ kg (amu)

Energy released Compare predicted and experimental He masses **Predicted mass =** $2p^+ + 2n + 2e^- = 4.0320$ amu Experiment mass = 4.0015 amu Mass

Energy released $\Delta E = \Delta m \times c^2$ Mass → nuclear binding energy $E = 0.0305 \times 1.66 \times 10^{-27} \times (3 \times 10^{8})^{2}$ $= 4.5 \times 10^{-12}$ J per atom For 1 mole: $E = 2.7 \times 10^9 \text{ kJ}$

Energy released $\Delta E = \Delta m \times c^2$ Also used to find E released during any nuclear reaction

Energy released $\Delta E = \Delta m \times c^2$ Also used to find E released during any nuclear reaction $^{210}_{_{84}}\mathrm{Po} \rightarrow$ $^{206}_{82}$ Pb $^{4}_{2}$ He + 4.0026 209.9829 205.9745 Need Δm

Energy released $\Delta m = initial mass - final mass$ = (mass Po) - (mass Pb + He) = 209.9829 - (205.9745 + 4.0026) $^{210}_{84}$ Po \rightarrow $^{206}_{82}$ Pb + $^{4}_{2}$ He 4.0026 209.9829 205.9745 $\Delta m = 0.058 amu$

Energy released $\Delta E = \Delta m \times c^2$ = (0.0058 × 1.66 × 10⁻²⁷) × (3 × 10⁸)² = 2.89 × 10⁻¹³ J

- ${}^{210}_{84}\text{Po} \rightarrow {}^{206}_{82}\text{Pb} + {}^{4}_{2}\text{He}$
- **209.9829 205.9745 4.0026**
Sources of Radiation Exposure

Second leading cause of lung cancer in the US. Causes 1000's of lung cancer deaths per year.

Colorless, odorless and tasteless radioactive gas In most rocks and soil Released by decay of uranium Dispersed outdoors Possible high levels indoors

High levels in15 counties

Madison and Colbert greatest

Readon Why is radon dangerous ?

α

ΒY

α

β⁻γ

β"γ

Shielding

Alpha particles blocked by: 1 cm of air sheet of paper human skin If α-emitting isotopes inhaled or ingested → harmful.

Shielding

Beta particles requires 1 mm of AI to block If β-emitting isotopes inhaled or ingested → absorbed by bones

Shielding

Gamma and X-rays need thick concrete or lead to block

most penetrating severe damage to internal organs

Measuring Radiation

Geiger counter: radiation ionizes argon ⇒ current

Units of radiation

Becquerel (Bq) SI unit = 1 disintegration/sec Curie (Ci) amount of radioactive material decaying at same rate as 1 g of Ra $= 3.7 \times 10^{10} \text{ dis/sec}$ $1 \text{ Ci} = 3.7 \text{ x } 10^{10} \text{ Bq}$ Measure radioactive decay

Units of radiation

Gray (Gy) 1 Gy of radiation deposits 1 J of energy per kg of matter (SI unit) Rad 1 Rad = 0.01 Gy

Measure equivalent dose

Units of radiation

Sievert (Sv) 1 Sv = 100 rem

Rem

rad equivalent for humans, used to describe biological damage

Measure absorbed dose

Everything is radioactive to some extent

One loaf of bread 70Bq One adult person 3,000Bq

Time for 50% of an isotope to decay

Some Representative Half-Lives					
Nuclide	Half-Life ^a	Nuchde	Half-Lìre ^a	Nuclide	Half-Life ^a
$^{3}_{1}H$	12.26 y	$^{40}_{19} m K$	$1.25 imes10^9~{ m y}$	²¹⁴ ₈₄ Po	$1.64 imes 10^{-4} \mathrm{s}$
$^{14}_{6}C$	5730 y	$^{80}_{35}{ m Br}$	17.6 min	$^{222}_{86}$ Rn	3.823 d
¹³ ₈ O	$8.7 imes10^{-3}~ m s$	⁹⁰ ₃₈ Sr	27.7 у	$^{226}_{88}$ Ra	$1.60 imes 10^3 ext{ y}$
$^{28}_{12}$ Mg	21 h	$^{131}_{53}I$	8.040 d	²³⁴ ₉₀ Th	24.1 d
$^{32}_{15}P$	14.3 d	¹³⁷ ₅₅ Cs	30.23 y	$^{238}_{92}$ U	$4.51 imes10^9~ m y$
$^{35}_{16}S$	88 d				

^as, second; min, minute; h, hour; d, day; y, year.

Radioactive Decay

Half-life

First-order reaction

$t_{1/2} = \frac{0.693}{k}$

k = rate constant $C_0, C_t = initial, final amounts$

- how much isotope left after time, t

- time taken for % of isotope to decay

Example:

Half-life of ⁶³Ni is 100 years. If you had 100 g of ⁶³Ni, how much would be left after 250 years?

$$\log \frac{C_0}{C_1} = \frac{kt}{2.303}$$

 $\frac{C_{0}}{C_{1}} = \frac{\kappa_{1}}{2.303}$ log-

k = ? C₀ = 100 g C_t = ? t = 250 yr

Radiation and Health

- Factors influencing degree of exposure
- Half-life shorter half-life materials decay faster ⇒ greater damage
- Type of radiation some worse than others
- **Distance from source Intensity** ~ 1/distance² **Time of exposure cumulative**

Uses of radiation

- Age determination (dating) of minerals/fossils
- Cancer treatment
- Tracers & Imaging
- Nuclear power
- Food irradiation

Radioactive Dating

two general types

geochronology long half-life isotopes in minerals carbon dating radioactive C-14 in formerly living objects

Radiocarbon Dating

Two carbon isotopes found in nature:

carbon-12 non-radioactive carbon-14 radioactive

Radiocarbon Dating

In living tissue ratio C-14 to C-12 is 1:10¹²

After death, no more C-14 taken in; ratio changes Decreases by 50% every 5,730 yrs Good for fossils, wood, textiles

Nuclear Power

Energy obtained 2 ways

Fission: splitting large atoms (power plants; bombs) Fusion: joining small atoms (sun)

Nuclear energy provides about 20 % of US electricity 103 nuclear reactors with operating licences in 31 states

25 % of electricity in Alabama

Isotopes of Uranium 235 92 238 92 U

Pitchlend

Nuclear Power

Uranium-235 used as reactor fuel Produces nuclear chain reaction by fission

$$^{235}_{92}U + ^{1}_{0}n \rightarrow ^{141}_{56}Ba + ^{92}_{36}Kr + 3^{1}_{0}n$$

Nuclear Power

Fisson generates heat

Heat boils water

steam ↓ turbines ↓ electricity Two sections U-235 forced together

Creates supercritical mass When just enough fissions occur to keep the chain reaction going → critical reaction → nuclear power

When excess neutrons produced fission rate keeps increasing → supercritical reaction → nuclear explosion

Little Boy and Fat Man

August 6th, 1945: 8:15am. Enola Gay releases "Little Boy" at altitude 31,500'. Preset to explode at altitude 2000' above Hiroshima. 75,000 people killed immediately. 48,000 buildings destroyed.

August 9th, 1945: 10:00am. Bock's Car releases "Fat Man" over Nagasaki. 35,000 people killed immediately.

Uranium tipped tank penetrating munitions

Why use uranium?

- 1. Very, very dense
- 2. Very hard
- 3. Pyrophoric

Health Effects

Two classes Somatic (whole body) damage

- Chronic (cancer)
- Acute (acute radiation syndrome)

Genetic damage

- Alters genetic material
- Mutations in offspring

Cadmium control rods absorb excess neutrons to keep reactor below supercritical

Solar output = E of burning 1500 lb coal/hour for each sq² of solar surface

1919: Sir Arthur Eddington showed H → He provided Sun's energy

4 million metric tons H per sec 100 billion H-bombs each sec

Deuterium & Tritium come from water

